Search result: Catalogue data in Autumn Semester 2021
Physics Bachelor ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
402-0205-00L | Quantum Mechanics I | O | 10 credits | 3V + 2U | M. Gaberdiel | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | General structure of quantum theory: Hilbert spaces, states and observables, equations of motion, Heisenberg uncertainty relation, symmetries, angular momentum addition, EPR paradox, Schrödinger and Heisenberg picture. Applications: simple potentials in wave mechanics, scattering and resonance, harmonic oscillator, hydrogen atom, and perturbation theory. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Introduction to single-particle quantum mechanics. Familiarity with basic ideas and concepts (quantisation, operator formalism, symmetries, angular momentum, perturbation theory) and generic examples and applications (bound states, tunneling, hydrogen atom, harmonic oscillator). Ability to solve simple problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The beginnings of quantum theory with Planck, Einstein and Bohr; Wave mechanics; Simple examples; The formalism of quantum mechanics (states and observables, Hilbert spaces and operators, the measurement process); Heisenberg uncertainty relation; Harmonic oscillator; Symmetries (in particular rotations); Hydrogen atom; Angular momentum addition; Quantum mechanics and classical physics (EPR paradoxon and Bell's inequality); Perturbation theory. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Auf Moodle, in deutscher Sprache | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | G. Baym, Lectures on Quantum Mechanics E. Merzbacher, Quantum Mechanics L.I. Schiff, Quantum Mechanics R. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals J.J. Sakurai: Modern Quantum Mechanics A. Messiah: Quantum Mechanics I S. Weinberg: Lectures on Quantum Mechanics | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fostered competencies![]() |
|
Page 1 of 1