Search result: Catalogue data in Autumn Semester 2021
Physics Bachelor ![]() | ||||||
![]() | ||||||
![]() ![]() | ||||||
![]() ![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|
401-2303-00L | Complex Analysis | O | 6 credits | 3V + 2U | T. H. Willwacher | |
Abstract | Complex functions of one variable, Cauchy-Riemann equations, Cauchy theorem and integral formula, singularities, residue theorem, index of closed curves, analytic continuation, special functions, conformal mappings, Riemann mapping theorem. | |||||
Objective | Working knowledge of functions of one complex variables; in particular applications of the residue theorem. | |||||
Literature | B. Palka: "An introduction to complex function theory." Undergraduate Texts in Mathematics. Springer-Verlag, 1991. E.M. Stein, R. Shakarchi: Complex Analysis. Princeton University Press, 2010 Th. Gamelin: Complex Analysis. Springer 2001 E. Titchmarsh: The Theory of Functions. Oxford University Press D. Salamon: "Funktionentheorie". Birkhauser, 2011. (In German) L. Ahlfors: "Complex analysis. An introduction to the theory of analytic functions of one complex variable." International Series in Pure and Applied Mathematics. McGraw-Hill Book Co. K.Jaenich: Funktionentheorie. Springer Verlag R.Remmert: Funktionentheorie I. Springer Verlag E.Hille: Analytic Function Theory. AMS Chelsea Publications | |||||
401-2333-00L | Methods of Mathematical Physics I ![]() | O | 6 credits | 3V + 2U | G. Felder | |
Abstract | Fourier series. Linear partial differential equations of mathematical physics. Fourier transform. Special functions and eigenfunction expansions. Distributions. Selected problems from quantum mechanics. | |||||
Objective | ||||||
402-2883-00L | Physics III | O | 7 credits | 4V + 2U | U. Keller | |
Abstract | Introductory course on quantum and atomic physics including optics and statistical physics. | |||||
Objective | A basic introduction to quantum and atomic physics, including basics of optics and equilibrium statistical physics. The course will focus on the relation of these topics to experimental methods and observations. | |||||
Content | Einführung in die Quantenphysik: Planck’sche Strahlung (Wärmestrahlung), Photonen, Photoelektrischer Effekt, Thomson and Rutherford Streuung, Compton Streuung, Bohrsche Atommodell, de-Broglie Materiewellen. Optik/Wellenoptik: Linsen, Abbildungssysteme, Brechung und Fermatsches Prinzip, Beugung, Interferenz, Fabry-Perot, Interferometer, Spektrometer. Quantenmechanik: Dualismus Teilchen-Welle, Wellenfunktionen, Operatoren, Schrödinger-Gleichung, Potentialstufe und Potentialkasten, harmonischer Oszillator Quantenmechanische Atomphysik: Coulombpotential in der Schrödinger-Gleichung, Wasserstoffatom, Atomorbitale, Spin, Zeeman-Effekt, Spin-Bahn Kopplung, Mehrelektronenatome, Röntgenspektren, Auswahlregeln, Absorption und Emission von Strahlung, Molekülorbitale und Kovalente Bindung Statistische Physik: Wahrscheinlichkeitsverteilungen, Ideales Gas, Äquipartitionsgesetz, Zustandsdichte, Maxwell-Boltzmann-Verteilung, Fermi-Dirac-Statistik für Fermionen, Bose-Einstein-Statistik für Bosonen, Elektronengas, Herleitung Planck’sche Strahlungsgesetz (Photonengas) | |||||
Lecture notes | Im Rahmen der Veranstaltung werden die Folien in elektronischer Form zur Verfügung gestellt. Ergänzendes Buch wird als Pflichtlektüre empfohlen. Es wird kein Skript in der Vorlesung verteilt. Wir werden die Quantenmechanik anhand der Schrödinger-Gleichung mit den klassischen elektro-magnetischen Wellen vergleichen. Zu den klassischen Wellen werden Ergänzungsunterlagen verteilt. | |||||
Literature | M. Alonso, E. J. Finn Quantenphysik und Statistische Physik R. Oldenbourg Verlag, München 5. Auflage ISBN 978-3-486-71340-4 |
Page 1 of 1