Search result: Catalogue data in Autumn Semester 2021

Mathematics Master Information
Electives
For the Master's degree in Applied Mathematics the following additional condition (not manifest in myStudies) must be obeyed: At least 15 of the required 28 credits from core courses and electives must be acquired in areas of applied mathematics and further application-oriented fields.
Electives: Pure Mathematics
Selection: Algebra, Number Thy, Topology, Discrete Mathematics, Logic
NumberTitleTypeECTSHoursLecturers
401-3059-00LCombinatorics IIW4 credits2GN. Hungerbühler
AbstractThe course Combinatorics I and II is an introduction into the field of enumerative combinatorics.
ObjectiveUpon completion of the course, students are able to classify combinatorial problems and to apply adequate techniques to solve them.
ContentContents of the lectures Combinatorics I and II: congruence transformation of the plane, symmetry groups of geometric figures, Euler's function, Cayley graphs, formal power series, permutation groups, cycles, Bunside's lemma, cycle index, Polya's theorems, applications to graph theory and isomers.
401-3033-00LGödel's TheoremsW8 credits3V + 1UL. Halbeisen
AbstractDie Vorlesung besteht aus drei Teilen:
Teil I gibt eine Einführung in die Syntax und Semantik der Prädikatenlogik erster Stufe.
Teil II behandelt den Gödel'schen Vollständigkeitssatz
Teil III behandelt die Gödel'schen Unvollständigkeitssätze
ObjectiveDas Ziel dieser Vorlesung ist ein fundiertes Verständnis der Grundlagen der Mathematik zu vermitteln.
ContentSyntax und Semantik der Prädikatenlogik
Gödel'scher Vollständigkeitssatz
Gödel'sche Unvollständigkeitssätze
LiteratureL. Halbeisen and R. Krapf: Gödel's Theorems and Zermelo's Axioms: a firm foundation of mathematics, Birkhäuser-Verlag, Basel (2020)
Selection: Geometry
NumberTitleTypeECTSHoursLecturers
401-3533-70LTopics in Riemannian GeometryW6 credits3VU. Lang
AbstractSelected topics from Riemannian geometry in the large: triangle and volume comparison theorems, Milnor's results on growth of the fundamental group, Gromov-Hausdorff convergence, Cheeger's diffeomorphism finiteness theorem, the Besson-Courtois-Gallot barycenter method and the proofs of the minimal entropy theorem and the Mostow rigidity theorem for rank one locally symmetric spaces.
Objective
Lecture notesLecture notes will be provided.
401-4207-71LCoxeter Groups from a Geometric ViewpointW4 credits2VM. Cordes
AbstractIntroduction to Coxeter groups and the spaces on which they act.
ObjectiveUnderstand the basic properties of Coxeter groups.
LiteratureBrown, Kenneth S. "Buildings"

Davis, Michael "The geometry and topology of Coxeter groups"
Prerequisites / NoticeStudents must have taken a first course in algebraic topology or be familiar with fundamental groups and covering spaces. They should also be familiar with groups and group actions.
401-3057-00LFinite Geometries II
Does not take place this semester.
W4 credits2GN. Hungerbühler
AbstractFinite geometries I, II: Finite geometries combine aspects of geometry, discrete mathematics and the algebra of finite fields. In particular, we will construct models of axioms of incidence and investigate closing theorems. Applications include test design in statistics, block design, and the construction of orthogonal Latin squares.
ObjectiveFinite geometries I, II: Students will be able to construct and analyse models of finite geometries. They are familiar with closing theorems of the axioms of incidence and are able to design statistical tests by using the theory of finite geometries. They are able to construct orthogonal Latin squares and know the basic elements of the theory of block design.
ContentFinite geometries I, II: finite fields, rings of polynomials, finite affine planes, axioms of incidence, Euler's thirty-six officers problem, design of statistical tests, orthogonal Latin squares, transformation of finite planes, closing theorems of Desargues and Pappus-Pascal, hierarchy of closing theorems, finite coordinate planes, division rings, finite projective planes, duality principle, finite Moebius planes, error correcting codes, block design
Literature- Max Jeger, Endliche Geometrien, ETH Skript 1988

- Albrecht Beutelspacher: Einführung in die endliche Geometrie I,II. Bibliographisches Institut 1983

- Margaret Lynn Batten: Combinatorics of Finite Geometries. Cambridge University Press

- Dembowski: Finite Geometries.
Selection: Analysis
NumberTitleTypeECTSHoursLecturers
401-4421-71LHarmonic AnalysisW4 credits2VA. Figalli
AbstractThe goal of this class is to give an introduction to harmonic analysis, covering a series of classical important results such as:
1) interpolation theorems
2) convergence properties of Fourier series
3) Calderón-Zygmund operators
4) Littlewood-Paley decomposition
5) Hardy and BMO spaces
Objective
Lecture notesI plan to write some notes of the class.
LiteratureThere is no official textbook.
401-4475-71LMicrolocal AnalysisW6 credits3GP. Hintz
AbstractMicrolocal analysis is the analysis of partial differential equations in phase space. The first half of the course introduces basic notions such as pseudodifferential operators, wave front sets of distributions, and elliptic parametrices. The second half develops modern tools for the study of nonelliptic equations, with applications to wave equations arising in general relativity.
ObjectiveStudents will be able to analyze linear partial differential operators (with smooth coefficients) and their solutions in phase space, i.e. in the cotangent bundle. For various classes of operators including, but not limited to, elliptic and hyperbolic operators, they will be able to prove existence and uniqueness (possibly up to finite-dimensional obstructions) of solutions, and study the precise regularity properties of solutions.

The first goal is to construct and apply parametrices (approximate inverses) or approximate solutions of PDEs using suitable calculi of pseudodifferential operators (ps.d.o.s). This requires defining ps.d.o.s and the associated symbol calculus on Euclidean space, proving the coordinate invariance of ps.d.o.s, and defining a ps.d.o. calculus on manifolds (including mapping properties on Sobolev spaces).

The second goal is to analyze distributions and operations on them (such as: products, restrictions to submanifolds) using information about their wave front sets or other microlocal regularity information. Students will in particular be able to compute the wave front set of distributions.

The third goal is to infer microlocal properties (in the sense of wave front sets) of solutions of general linear PDEs, with a focus on elliptic, hyperbolic and certain degenerate hyperbolic PDE. For hyperbolic operators, this includes proving the Duistermaat-Hörmander theorem on the propagation of singularities. For certain degenerate hyperbolic operators, students will apply positive commutator methods to prove results on the propagation of microlocal regularity at critical or invariant sets for the Hamiltonian vector field of the principal symbol of the partial differential operator under study.
ContentTempered distributions, Sobolev spaces, Schwartz kernel theorem.

Symbols, asymptotic summation.

Pseudodifferential operators on Euclidean space: composition, principal symbols and the symbol calculus, elliptic parametrix construction, boundedness on Sobolev spaces.

Pseudodifferential operators on manifolds, elliptic operators on compact manifolds and Fredholm theory, basic symplectic geometry.

Microlocalization: wave front set, characteristic set; pairings, products, restrictions of distributions.

Hyperbolic evolution equations: existence and uniqueness of solutions, Egorov's theorem.

Propagation of singularities: the Duistermaat-Hörmander theorem, microlocal estimates at radial sets.

Applications to general relativity: asymptotic behavior of waves on de Sitter space.
Lecture notesLecture notes will be made available on the course website.
LiteratureLars Hörmander, "The Analysis of Linear Partial Differential Operators", Volumes I and III.

Alain Grigis and Johannes Sjöstrand, "Microlocal Analysis for differential operators: an introduction".
Prerequisites / NoticeStudents are expected to have a good understanding of functional analysis. Familiarity with distribution theory, the Fourier transform, and analysis on manifolds is useful but not strictly necessary; the relevant notions will be recalled in the course.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesfostered
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Media and Digital Technologiesfostered
Problem-solvingassessed
Project Managementfostered
Social CompetenciesCommunicationassessed
Cooperation and Teamworkfostered
Customer Orientationfostered
Leadership and Responsibilityfostered
Self-presentation and Social Influence fostered
Sensitivity to Diversityfostered
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingassessed
Critical Thinkingassessed
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
Selection: Further Realms
NumberTitleTypeECTSHoursLecturers
401-3502-71LReading Course Restricted registration - show details
To start an individual reading course, contact an authorised supervisor
Link
and register your reading course in myStudies.
W2 credits4ASupervisors
AbstractFor this Reading Course proactive students make an individual agreement with a lecturer to acquire knowledge through independent literature study.
Objective
401-3503-71LReading Course Restricted registration - show details
To start an individual reading course, contact an authorised supervisor
Link
and register your reading course in myStudies.
W3 credits6ASupervisors
AbstractFor this Reading Course proactive students make an individual agreement with a lecturer to acquire knowledge through independent literature study.
Objective
401-3504-71LReading Course Restricted registration - show details
To start an individual reading course, contact an authorised supervisor
Link
and register your reading course in myStudies.
W4 credits9ASupervisors
AbstractFor this Reading Course proactive students make an individual agreement with a lecturer to acquire knowledge through independent literature study.
Objective
401-3504-02LReading Course (No. 2) Restricted registration - show details
To start an individual reading course, contact an authorised supervisor
Link
and register your reading course in myStudies.
W4 credits9ASupervisors
AbstractFor this Reading Course proactive students make an individual agreement with a lecturer to acquire knowledge through independent literature study.
Objective
401-0000-00LCommunication in Mathematics
Does not take place this semester.
W2 credits1VW. Merry
AbstractDon't hide your Next Great Theorem behind bad writing.

This course teaches fundamental communication skills in mathematics: how to write clearly and how to structure mathematical content for different audiences, from theses, to preprints, to personal statements in applications. In addition, the course will help you establish a working knowledge of LaTeX.
ObjectiveKnowing how to present written mathematics in a structured and clear manner.
ContentTopics covered include:

- Language conventions and common errors.
- How to write a thesis (more generally, a mathematics paper).
- How to use LaTeX.
- How to write a personal statement for Masters and PhD applications.
Lecture notesFull lecture notes will be made available on my website:

Link
Prerequisites / NoticeThere are no formal mathematical prerequisites.
  •  Page  1  of  1