Suchergebnis: Katalogdaten im Herbstsemester 2021
Bauingenieurwissenschaften Master | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Master-Studium (Studienreglement 2020) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1. Semester | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Seminararbeit (obligatorisch für alle Vertiefungen) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
101-0007-00L | Project Management for Construction Projects | O | 4 KP | 3S | J. J. Hoffman | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course is designed to lay down the foundation of the different concepts, techniques, and tools for successful project management of construction projects. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The goal is that at the end of this course students should have a good understanding of the different project management knowledge areas, the phases required for successful project management, and the role of a project manager. To demonstrate this, students will work in groups in different case studies to apply the concepts, tools and techniques presented in the class. Two 3 to 4 hours sessions towards the end of the lecture series will introduce a practical project to allow the teams to demonstrate the tools and techniques learned during the semester. The course will have a final quiz that will be graded. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The main content of the course is summarized in the following topics: - Project and organization structures - Project scheduling - Resource management - Project estimating - Project financing - Risk management - Project Reporting - Interpersonal skills | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | The slides for the class will be available for download from Moodle at least one day before each class. Copies of all necessary documents will be distributed at appropriate times. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Relevant readings will be recommended throughout the course (and made available to the students via Moodle). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The students will be randomly assigned to teams. Students will be graded as a team based on the final Project report and the in-class oral presentation of the Project Proposal as well as a final exam (50% exam and 50% project report and presentation). Homework will not be graded but your final report and presentation will consist mostly of your homework assignments consolidated and put in a report and presentation format. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vertiefungsfächer | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vertiefung in Bau- und Erhaltungsmanagement | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-8011-00L | Building Physics: Theory and Applications Enrolment after agreement with the lecturer only. | W | 4 KP | 3V + 1U | A. Kubilay, X. Zhou, L. D'Amato, A. Rubin, D. A. Strebel | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Principles of heat and mass transport, hygro-thermal performance, durability of the building envelope and interaction with indoor and outdoor climates, applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The students will acquire in the following fields: - Principles of heat and mass transport and its mathematical description. - Indoor and outdoor climate and driving forces. - Hygrothermal properties of building materials. - Building envelope solutions and their construction. - Hygrothermal performance and durability. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Principles of heat and mass transport, hygro-thermal performance, durability of the building envelope and interaction with indoor and outdoor climates, applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Handouts, supporting material and exercises are provided online via Moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
066-0427-00L | Design and Building Process MIBS ITA Pool - information event on the courses offered at the institute ITA: Wednesday 8th September 2021, 10-11 h, ONLINE. ZoomLink: https://ethz.zoom.us/j/66588100789 | W | 2 KP | 2V | A. Paulus | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | "Design and Building Process MIBS" is a brief manual for prospective architects and engineers covering the competencies and the responsibilities of all involved parties through the design and building process. Lectures on twelve compact aspects gaining importance in a increasingly specialised, complex and international surrounding. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Participants will come to understand how they can best navigate the design and building process, especially in relation to understanding their profession, gaining a thorough knowledge of rules and regulations, as well as understanding how involved parties' minds work. They will also have the opportunity to investigate ways in which they can relate to, understand, and best respond to their clients' wants and needs. Finally, course participants will come to appreciate the various tools and instruments, which are available to them when implementing their projects. The course will guide the participants, bringing the individual pieces of knowledge into a superordinate relationship. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | "Design and Building Process MIBS" is a brief manual for prospective architects and engineers covering the competencies and the responsibilities of involved parties through the design and building process. Twelve compact aspects regarding the establishe building culture are gaining importance in an increasingly specialised, complex and international surrounding. Lectures on the topics of profession, service model, organisation, project, design quality, coordination, costing, tendering and construction management, contracts and agreements, life cycle, real estate market, and getting started will guide the participants, bringing the individual pieces of knowledge into a superordinate relationship. The course introduces the key figures, depicts the criteria of the project and highlights the proveded services of the consultants. In addition to discussing the basics, the terminologies and the tendencies, the lecture units will refer to the studios as well as the prctice: Teaching-based case studies will compliment and deepen the understanding of the twelve selected aspects. The course is presented as a moderated seminar to allow students the opportunity for invididual input: active cololaboration between the students and their tutor therefore required. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | https://map.arch.ethz.ch | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | ITA Pool - information event on the courses offered at the institute ITA: Wednesday 7th September 2022, 10-11 h, ONLINE. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0427-01L | Public Transport Design and Operations | W | 6 KP | 4G | F. Corman, F. Leutwiler | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course aims at analyzing, designing, improving public transport systems, as part of the overall transport system. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Public transport is a key driver for making our cities more livable, clean and accessible, providing safe, and sustainable travel options for millions of people around the globe. Proper planning of public transport system also ensures that the system is competitive in terms of speed and cost. Public transport is a crucial asset, whose social, economic and environmental benefits extend beyond those who use it regularly; it reduces the amount of cars and road infrastructure in cities; reduces injuries and fatalities associated to car accidents, and gives transport accessibility to very large demographic groups. Goal of the class is to understand the main characteristics and differences of public transport networks. Their various performance criteria based on various perspective and stakeholders. The most relevant decision making problems in a planning tactical and operational point of view At the end of this course, students can critically analyze existing networks of public transport, their design and use; consider and substantiate possible improvements to existing networks of public transport and the management of those networks; optimize the use of resources in public transport. General structure: general introduction of transport, modes, technologies, system design and line planning for different situations, mathematical models for design and line planning timetabling and tactical planning, and related mathematical approaches operations, and quantitative support to operational problems, evaluation of public transport systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Basics for line transport systems and networks Passenger/Supply requirements for line operations Objectives of system and network planning, from different perspectives and users, design dilemmas Conceptual concepts for passenger transport: long-distance, urban transport, regional, local transport Planning process, from demand evaluation to line planning to timetables to operations Matching demand and modes Line planning techniques Timetabling principles Allocation of resources Management of operations Measures of realized operations Improvements of existing services | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture slides are provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Ceder, Avi: Public Transit Planning and Operation, CRC Press, 2015, ISBN 978-1466563919 (English) Holzapfel, Helmut: Urbanismus und Verkehr – Bausteine für Architekten, Stadt- und Verkehrsplaner, Vieweg+Teubner, Wiesbaden 2012, ISBN 978-3-8348-1950-5 (Deutsch) Hull, Angela: Transport Matters – Integrated approaches to planning city-regions, Routledge / Taylor & Francis Group, London / New York 2011, ISBN 978-0-415-48818-4 (English) Vuchic, Vukan R.: Urban Transit – Operations, Planning, and Economics, John Wiley & Sons, Hoboken / New Jersey 2005, ISBN 0-471-63265-1 (English) Walker, Jarrett: Human Transit – How clearer thinking about public transit can enrich our communities and our lives, ISLAND PRESS, Washington / Covelo / London 2012, ISBN 978-1-59726-971-1 (English) White, Peter: Public Transport - Its Planning, Management and Operation, 5th edition, Routledge, London / New York 2009, ISBN 978-0415445306 (English) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0509-00L | Infrastructure Management 1: Process | O | 6 KP | 3G | B. T. Adey | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Infrastructure asset management is the process used to ensure that infrastructure provides adequate levels of service for specified periods of time. This course provides an overview of the process, from setting goals to developing intervention programs to analyzing the process itself. It consists of weekly lectures and a group project. Additionally, there is a weekly help session. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | There are a large number of efforts around the world to obtain more net benefits from infrastructure assets. This can be seen through the proliferation of codes and guidelines and the increasing amount of research in road infrastructure asset management. Many of these codes and guidelines and much of the research, however, are focused on only part of the large complex problem of infrastructure asset management. The objective of this course is to provide an overview of the entire infrastructure management process. The high-level process described can be used as a starting point to ensure that infrastructure management is done professionally, efficiently and effectively. It also enables a clear understanding of where computer systems can be used to help automate parts of the process. Students can use this process to help improve the specific infrastructure management processes in the organisations in which they work in the future. More specifically upon completion of the course, students will • understand the main tasks of an infrastructure manager and the complexity of these tasks, • understand the importance of setting goals and constraints in the management of infrastructure, • be able to predict the deterioration of individual assets using discrete states that are often associated with visual inspections, • be able to develop and evaluate simple management strategies for individual infrastructure assets, • be able to develop and evaluate intervention programs that are aligned with their strategies, • understand the principles of guiding projects and evaluating the success of projects, • be able to formally model infrastructure management processes, and • understand the importance of evaluating the infrastructure management process and have a general idea of how to do so. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The weekly lectures are structured as follows: 1 Introduction: An introduction to infrastructure management, with emphasis on the consideration of the benefits and costs of infrastructure to all members of society, and balancing the need for prediction accuracy with analysis effort. The expectations of your throughout the semester, including a description of the project. 2 Positioning infrastructure management in society: As infrastructure plays such an integral part in society, there is considerable need to ensure that infrastructure managers are managing it as best possible. A prominent network regulator explains the role and activities of a network regulator. 3 Setting goals and constraints – To manage infrastructure you need to know what you expect from it in terms of service and how much you are willing to pay for it. We discuss the measures of service for this purpose, as well as the ideas of quantifiable and non-quantifiable benefits, proxies of service, and valuing service. 4 Predicting the future – As infrastructure and our expectations of service from it change over time, these changes need to be included in the justification of management activities. This we discuss the connection between provided service and the physical state of the infrastructure and one way to predict their evolution over time. 5 Help session 1 6 Determining and justifying general interventions - It is advantageous to be able to explain why infrastructure assets need to be maintained, and not simply say that they need to be maintained. This requires explanation of the types of interventions that should be executed and how these interventions will achieve the goals. It also requires explaining which interventions are to be done if it is not possible to do everything due to for example budget constraints. This week we cover how to determine optimal intervention strategies for individual assets, and how to convert these strategies into network level intervention programs. 7 Determining and justifying monitoring - Once it is clear how infrastructure might change over time, and the optimal intervention strategies are determined, you need to explain how you are going to know that these states exist. This requires the construction of monitoring strategies for each of asset. This week we focus on how to develop monitoring strategies that ensure interventions are triggered at the right time. 8 Converting programs to projects / Analysing projects – Once programs are completed and approved, infrastructure managers must create, supervise and analyse projects. This week we focus on this conversion and the supervision and analysis of projects. 9 Help session 2 10 Ensuring good information – Infrastructure management requires consistent and correct information. This is enabled by the development of a good information model. This week we provide an introduction to information models and how they are used in infrastructure management. 11 Ensuring a well-run organization – How people work together affects how well the infrastructure is managed. This week we focus on the development of the human side of the infrastructure management organisation. 12 Describing the IM process – Infrastructure management is a process that is followed continually and improved over time. It should be written down clearly. This week we will concentrate on how this can be done using the formal modelling notation BPMN 2.0. 13 Evaluating the IM process – Infrastructure management processes can always be improved. Good managers acknowledge this, but also have a plan for continual improvement. This week we concentrate on how you can systematically evaluate the infrastructure management process. 14 Help session 3 and submission of project report. The course uses a combination of qualitative and quantitative approaches. The quantitative analysis required in the project requires at least the use of Excel. Some students, however, prefer to use Python or R. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | • The lecture materials consist of handouts, the slides, and example calculations in Excel. • The lecture materials will be distributed via Moodle two days before each lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Appropriate literature will be handed out when required via Moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | This course has no prerequisites. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0517-10L | Baubetrieb im Untertagbau | W | 3 KP | 2G | H. Ehrbar | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | - Bauverfahren für konventionelle Vortriebe im Lockermaterial und im Fels (Tunnel-, Schacht- und Kavernenbau) - Bauverfahren für maschinellen Vortrieb - Entscheidungskriterien für die Wahl der Vortriebsmethoden - Baustelleneinrichtungen, Logistik und Analyse des Baubetriebs | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Vermittlung praxisnaher Kenntnisse bezüglich - Auswahl der Bauverfahren - Arbeitszyklen und Ausführung im konventionellen und maschinellen Vortrieb, inkl. Materialbewirtschaftung - Ausführungskontrollen und Überwachung - Anforderungen der Arbeitssicherheit, Gesundheitsschutz und Umweltschutz - Erhaltungsmassnahmen Die Studierenden werden befähigt, ein Untertagbauprojekt in der Phase Bauprojekt als Planer (unter Berücksichtigung unternehmerischer Überlegungen) zu bearbeiten. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Allgemeine Grundlagen -SIA 196, SIA 197, SIA 198, SIA 118/198 - Kenntnis der Vortriebsmethoden - Entscheidungsgrundlagen zur Wahl der Vortriebsmethode - Baustellenlogistik (Transporte, Lüftung, Kühlung, Wasser, Materialbewirtschaftung) - Werkstoffe Konventioneller Vortrieb - Ausbruchmethoden (Vollausbruch / Teilausbruch) - Ausbruchsicherung - Abdichtung - Innengewölbe Maschineller Vortrieb - Offener Vortrieb (Gripper-TBM), Ausbruchsicherungskonzepte - Schildvortriebe im Fels und Lockermaterial Innenausbau - Abdichtung und Entwässerung - Innengewölbe - Bankette | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Vorlesungsfolien und Literaturhinweise | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Im Rahmen der Vorlesung wird auf die gängige Fachliteratur hingewiesen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0524-00L | Lean, Integrated and Digital Project Delivery | W | 4 KP | 3G | D. Hall | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course is an introduction to innovative construction project delivery through three strategies: integrated information, integrated organization, and integrated processes. Students will be introduced to project and production management concepts such as Lean Construction, Building Information Modeling, the Tri-Constraint Method, & Integrated Project Delivery. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | By the end of the course, students will be able to plan and manage the lean, integrated, and digital project delivery of a construction project. Students will know they are able to achieve this overall course goal when they can: 1. Apply the fundamental theories of lean production to the context of construction management. This includes the ability to describe the three views of production: transformation, flow and value generation; evaluate the benefits of a pull production system compared to push production systems; evaluate how production variability and uncertainty contributes to work-in-process and 'waste'; and apply the concepts of lean production to several construction management tools including the Last Planner System, Pull Planning, Target Value Design, and Takt Planning. 2. Understand the fundamentals of Virtual Design and Construction and Building Information Modeling. This includes the ability to prepare a model breakdown structure capable of integrating project information for all stakeholders; describe the upcoming transition to a common data environment for BIM that will use platforms such as Autodesk Forge; and describe the barriers to successful implementation of BIM within construction and design firms 3. Plan and schedule an integrated '5D' scope schedule cost model using the Tri-Constraint Method. This includes the ability to understand the TCM algorithm, apply parametric logic to the creation of a virtual model for construction production; and evaluate the limitations of the critical path method when compared to resource- and space-constrained scheduling 4. Evaluate benefits of integrated project governance compared to the organization of traditional construction project delivery systems. This includes the ability to evaluate the risks, benefits and considerations for integrated teams using multi-party relational contracts that cross disciplinary and firm boundaries; and explain to others the 'elements' of integrated projects (e.g. colocation, early involvement of key stakeholders, shared risk/reward, collaborative decision making) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The construction industry is continually seeking to deliver High-Performance (HP) projects for their clients. HP buildings must meet the criteria of four focus areas – buildability, operability, usability, and sustainability. The project must be buildable, as measured by metrics of cost, schedule, and quality. It must be operable, as measured by the cost of maintaining the facility for the duration of its lifecycle. It must be usable, enabling productivity, efficiency and well-being of those who will inhabit the building. Finally, it must be sustainable, minimizing the use of resources such as energy and water. Buildings that succeed in all four of these areas can be considered HP projects. HP buildings require the integration of building systems. However, the traditional methods of planning and construction do not use an integrated approach. Project fragmentation between many stakeholders is often cited as the cause of poor project outcomes and the reason for poor productivity gains in the construction industry. In response, the construction industry has turned to new forms of integration in order to integrate the processes, organization, and information required for high performance projects. This course investigates emerging trends in the construction industry – e.g. colocation, shared risk/reward contracts, lean construction methods, and use of shared building information models (BIM) for virtual design and construction (VDC) – as a way to achieve HP projects. For integrated processes, students will be introduced to the fundamentals of lean construction management. This course will look at the causes of variability in construction production and teach the theory of lean production for construction. Processes and technologies will be introduced for lean management, such as the last planner system, takt time planning, production tracking, and target value design. For integrated information, students will be introduced to the fundamentals of virtual design and construction, including how to use work breakdown structures and model breakdown structures for building information modeling, and the fundamentals and opportunities for 4D scheduling, clash detection, and “5D and 6D” models. Future technologies emerging to integrate information such as the use of Autodesk Forge will be presented. Students will have the opportunity to discuss barriers in the industry to more advanced implementation of BIM and VDC. For integrated organization, students will study the limitations of the construction industry to effectively organize for complex projects, including the challenges of managing highly interdependent tasks and generating knowledge and learning within large multi-organizational project teams. One emerging approach in North America known as IPD will be studied as a case example. Students will explore the benefits of certain ‘elements’ of IPD such as project team colocation, early involvement of trade contractors, shared risk/reward contracts, and collaborative decision making. The course will also include several guest lectures from industry experts to further demonstrate how these concepts are applied in practice. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture Presentation slides will be available for viewing and download the day before each lecture. The class will be presented in a "flipped classroom" environment where students will be required to do readings or watch video before class. In-class activities will act to reinforce and expand upon these primary concepts. If possible due to COVID restrictions, students will be expected to attend a half-day workshop on the Last Planner System. The date of this workshop will be provided at a later point in time. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | A full list of required readings will be made available to the students via Moodle | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Project Management for Construction Projects (101-0007-00L) is a recommended but not required prerequisite for this course | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0577-00L | An Introduction to Sustainable Development in the Built Environment | O | 3 KP | 2G | G. Habert, D. Kaushal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | In 2015, the UN Conference in Paris shaped future world objectives to tackle climate change. in 2016, other political bodies made these changes more difficult to predict. What does it mean for the built environment? This course provides an introduction to the notion of sustainable development when applied to our built environment | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | At the end of the semester, the students have an understanding of the term of sustainable development, its history, the current political and scientific discourses and its relevance for our built environment. In order to address current challenges of climate change mitigation and resource depletion, students will learn a holistic approach of sustainable development. Ecological, economical and social constraints will be presented and students will learn about methods for argumentation and tools for assessment (i.e. life cycle assessment). For this purpose an overview of sustainable development is presented with an introduction to the history of sustainability and its today definition as well as the role of cities, urbanisation and material resources (i.e. energy, construction material) in social economic and environmetal aspects. The course aims to promote an integral view and understanding of sustainability and describing different spheres (social/cultural, ecological, economical, and institutional) that influence our built environment. Students will acquire critical knowledge and understand the role of involved stakeholders, their motivations and constraints, learn how to evaluate challenges, identify deficits and define strategies to promote a more sustainable construction. After the course students should be able to define the relevance of specific local, regional or territorial aspects to achieve coherent and applicable solutions toward sustainable development. The course offers an environmental, socio-economic and socio-technical perspective focussing on buildings, cities and their transition to resilience with sustainable development. Students will learn on theory and application of current scientific pathways towards sustainable development. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The following topics give an overview of the themes that are to be worked on during the lecture. - Overview on the history and emergence of sustainable development - Overview on the current understanding and definition of sustainable development Methods - Method 1: Life cycle assessment (planning, construction, operation/use, deconstruction) - Method 2: Life Cycle Costing - Method 3: Labels and certification Main issues: - Operation energy at building, urban and national scale - Mobility and density questions - Embodied energy for developing and developed world - Synthesis: Transition to sustainable development | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | All relevant information will be online available before the lectures. For each lecture slides of the lecture will be provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | A list of the basic literature will be offered on a specific online platform, that could be used by all students attending the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vertiefung in Geotechnik | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0317-00L | Untertagbau I | W+ | 3 KP | 2G | G. Anagnostou, E. Pimentel | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Vermittlung grundlegender Aspekte der Statik und Konstruktion im Untertagbau. Aufzeigen von verschiedenen Ausbruchsmethoden sowie Sicherungs- und Bauhilfsmassnahmen unter Berücksichtigung geologischer, statischer und ausführungstechnischer Gesichtspunkte. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Vermittlung grundlegender Aspekte der Statik und Konstruktion im Untertagbau. Aufzeigen von verschiedenen Ausbruchsmethoden sowie Sicherungs- und Bauhilfsmassnahmen unter Berücksichtigung geologischer, statischer und ausführungstechnischer Gesichtspunkte. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Grundlagen und Anwendungen numerischer Methoden in der Tunnelstatik Ausbruchsmethoden (Bau- und Betriebsweisen) Sicherungs- und Bauhilfsmassnahmen: - Injektionen - Jet Grouting - Gefrierverfahren - Wasserhaltung - Rohrschirme - Brustanker | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Autographieblätter | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Empfehlungen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0357-00L | Theoretical and Experimental Soil Mechanics Prerequisites: Mechanics I, II and III. The number of participants is limited to 60 due to the existing laboratory equipment! Students with major in Geotechnical Engineering have priority. Registrations will be accepted in the order they are received. | W+ | 6 KP | 4G | I. Anastasopoulos, R. Herzog, E. Korre, A. Marin, M. Schneider | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Overview of soil behaviour Explanation of typical applications: reality, modelling, laboratory tests with transfer of results to the practical examples Consolidation theory and typical applications in practice Triaxial & direct shear tests: consolidation & shear, drained & undrained response Plasticity theory & Critical State Soil Mechanics, Cam Clay Application of plasticity theory | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Extend knowledge of theoretical approaches that can be used to describe soil behaviour to enable students to carry out more advanced geotechnical design and to plan the appropriate laboratory tests to obtain relevant parameters for coupled plasticity models of soil behaviour. A further goal is to give students the wherewithal to be able to select an appropriate constitutive model and set up insitu stress conditions in preparation for subsequent numerical modelling (e.g. with finite elements). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Overview of soil behaviour Discussion of general gaps between basic theory and soil response Stress paths in practice & in laboratory tests Explanation of typical applications: reality, modelling, laboratory tests with transfer of results to the practical examples Consolidation theory for incremental and continuous loading oedometer tests and typical applications in practice Triaxial & direct shear tests: consolidation & shear, drained & undrained response Plasticity theory & Critical State Soil Mechanics, Cam Clay Application of plasticity theory | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Printed script with web support Exercises | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | http://geotip.igt.ethz.ch/ | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Lectures will be conducted as Problem Based Learning within the framework of a case history Virtual laboratory in support of 'hands-on' experience of selected laboratory tests Pre-requirements: Basic knowledge in soil mechanics as well as knowledge of advanced mechanics Laboratory equipment will be available for 60 students. First priority goes to those registered for the geotechnics specialty in the Masters, 2nd year students then first year students, doctoral students qualifying officially for their PhD status and then 'first come, first served'. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0307-00L | Design and Construction in Geotechnical Engineering | W | 4 KP | 3G | I. Anastasopoulos, A. Marin | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Die Lehrveranstaltung beinhaltet die praktische Anwendung der im Grundlagenstudium erworbenen geotechnischen Kenntnisse. Die in der Praxis des Geotechnikers wichtigsten Themengebiete werden behandelt und die Grundlagen für die Planung und Bemessung von geotechnischen Bauwerken werden vermittelt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Umsetzung bzw. Vertiefung der in den Grundlagenveranstaltungen erworbenen theoretischen Grundlagen. Fähigkeit zu Entwurf und Bemessung von geotechnischen Bauwerken auf dem Stand der Technik. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | u.a.: Einführung in die relevanten SIA Normen Flachfundationen und Setzungen Pfahlfundationen Baugrubenabschlüsse Böschungen und Hänge Nagelwände Geokunststoffbewehrter Boden Baugrundverbesserung Flussdämme | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Vorlesungsfolien und weiterführende Unterlagen werden zur Verfügung gestellt (Web Unterstützung http://geotip.igt.ethz.ch)) Übungsunterlagen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Sekundärliteratur zu Vorlesungsthemen wird vorlesungsbegleitend angegeben | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Voraussetzungen: Bachelorausbildung als Bauingenieur (ETH) mit erfolgreicher Belegung der Fächer Bodenmechanik (5KE) und Grundbau (5KE) oder äquivalent. Die Vorlesung umfasst mindesten einen Vortrag aus der Praxis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0369-00L | Forensic Geotechnical Engineering Voraussetzung: erfolgreicher Abschluss der Lerneinheit "Grundbau" (101-0315-00L) oder ein ähnliches Fach. | W | 3 KP | 2G | A. Puzrin | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | In this course selected famous geotechnical failures are investigated with the following purpose: (a) to deepen understanding of the geotechnical risks and possible solutions; (b) to practice design and analysis methods; (c) to learn the techniques for investigation of failures; (d) to learn the techniques for mitigation of the failure damage. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | In this course selected famous geotechnical failures are investigated with the following purpose: (a) to deepen understanding of the geotechnical risks and possible solutions; (b) to practice design and analysis methods; (c) to learn the techniques for investigation of failures; (d) to learn the techniques for mitigation of the failure damage. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Failure due to the loading history Failure due to excessive settlements Failure due to the leaning instability Bearing capacity failure Excavation failure Failure in the creeping landslides Failure evolution in submarine landslides Construction in the landslide influence zone Delayed failure in snow avalanches | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture notes Exercises | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Puzrin, A.M.; Alonso, E.E.; Pinyol, N.M.: Geomechanics of Failures. Springer, 2010. Alonso, E.E.; Pinyol, N.M.; Puzrin, A.M.: Geomechanics of Failures. Advanced Topics. Springer, 2010 Lang, H.J; Huder, J; Amann, P.; Puzrin, A.M.: Bodenmechanik und Grundbau, Springer-Lehrbuch, 9. Auflage, 2010. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The course is given in the first MSc semester. Prerequisite: Basic knowledge in Geotechnical Engineering (Course content of "Grundbau" or similar lecture). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0517-10L | Baubetrieb im Untertagbau | W | 3 KP | 2G | H. Ehrbar | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | - Bauverfahren für konventionelle Vortriebe im Lockermaterial und im Fels (Tunnel-, Schacht- und Kavernenbau) - Bauverfahren für maschinellen Vortrieb - Entscheidungskriterien für die Wahl der Vortriebsmethoden - Baustelleneinrichtungen, Logistik und Analyse des Baubetriebs | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Vermittlung praxisnaher Kenntnisse bezüglich - Auswahl der Bauverfahren - Arbeitszyklen und Ausführung im konventionellen und maschinellen Vortrieb, inkl. Materialbewirtschaftung - Ausführungskontrollen und Überwachung - Anforderungen der Arbeitssicherheit, Gesundheitsschutz und Umweltschutz - Erhaltungsmassnahmen Die Studierenden werden befähigt, ein Untertagbauprojekt in der Phase Bauprojekt als Planer (unter Berücksichtigung unternehmerischer Überlegungen) zu bearbeiten. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Allgemeine Grundlagen -SIA 196, SIA 197, SIA 198, SIA 118/198 - Kenntnis der Vortriebsmethoden - Entscheidungsgrundlagen zur Wahl der Vortriebsmethode - Baustellenlogistik (Transporte, Lüftung, Kühlung, Wasser, Materialbewirtschaftung) - Werkstoffe Konventioneller Vortrieb - Ausbruchmethoden (Vollausbruch / Teilausbruch) - Ausbruchsicherung - Abdichtung - Innengewölbe Maschineller Vortrieb - Offener Vortrieb (Gripper-TBM), Ausbruchsicherungskonzepte - Schildvortriebe im Fels und Lockermaterial Innenausbau - Abdichtung und Entwässerung - Innengewölbe - Bankette | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Vorlesungsfolien und Literaturhinweise | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Im Rahmen der Vorlesung wird auf die gängige Fachliteratur hingewiesen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vertiefung in Konstruktion | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0117-00L | Theory of Structures III | O | 3 KP | 2G | B. Stojadinovic | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course focuses on the axial, shear, bending and torsion load-deformation response of continuous elastic prismatic structural elements such as rods, beams, shear walls, frames, arches, cables and rings. Additional special topics, such as the behavior of inelastic prismatic structural elements or the behavior of planar structural elements and structures, may be addressed time-permitting. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | After passing this course students will be able to: 1. Explain the equilibrium of continuous structural elements. 2. Formulate mechanical models of continuous prismatic structural elements. 3. Analyze the axial, shear, bending and torsion load-deformation response of prismatic structural elements and structures assembled using these elements. 4. Determine the state of forces and deformations in rods, beams, frame structures, arches, cables and rings under combined mechanical and thermal loading. 5. Use the theory of continuous structures to design structures and understand the basis for structural design code provisions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | This is the third course in the ETH series on theory of structures. Building on the material covered in previous courses, this course focuses on the axial, shear, bending and torsion load-deformation response of continuous elastic prismatic structural elements such as rods, beams, shear walls, frames, arches, cables and rings. Additional special topics, such as the behavior of inelastic prismatic structural elements or the behavior of planar structural elements and structures may be addressed if time permits. The course provides the theoretical background and engineering guidelines for practical structural analysis of modern structures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Electronic copies of the learning material will be uploaded to ILIAS and available through myStudies. The learning material includes the lecture presentations, additional reading, and exercise problems and solutions. Lectures are streamed live and recorded on the ETH Video Portal. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Marti, Peter, “Baustatik: Grundlagen, Stabtragwerke, Flächentragwrke”, Ernst & Sohn, Berlin, 2. Auflage, 2014 Bouma, A. L., “Mechanik schlanker Tragwerke: Ausgewählte Beispiele der Praxis”, Springer Verlag, Berlin, 1993. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Working knowledge of theory of structures, as covered in ETH course Theory of Structures I (Baustatik I) and Theory of Structures II (Baustatik II) and ordinary differential equations. Basic knowledge of structural design of reinforced concrete, steel or wood structures. Familiarity with structural analysis computer software and computer tools such as Matlab, Mathematica, Mathcad or Excel. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0127-00L | Advanced Structural Concrete | O | 3 KP | 2G | J. Mata Falcón, W. Kaufmann | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course supplements the courses Structural Concrete I and II regarding the analysis and dimensioning of reinforced and prestressed concrete structures. It focuses on limit analysis methods for girders, discs, slabs and shells, particularly regarding their applicability to the safety assessment of existing structures and their computer-aided implementation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Enhancement of the understanding of the load-deformation response of reinforced and prestressed concrete; refined knowledge of models and ability to apply them to general problems, particularly regarding the structural safety assessment of existing structures; awareness of, and ability to check, the limits of applicability of limit analysis methods; knowledge of models suitable for computer-aided structural design and ability for critical use of structural design software. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Fundamentals (structural analysis, theorems of limit analysis, applicability of limit analysis methods); shear walls and girders (stress fields and truss models, deformation capacity, membrane elements with yield conditions and load-deformation behaviour, computer-aided structural design); slabs (equilibrium solutions, yield conditions, shear and punching shear); fibre reinforced concrete (mechanical behaviour, applications); long term effects; fire behaviour. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture notes see: http://www.concrete.ethz.ch | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Marti, P., “Theory of Structures: Fundamentals, Framed Structures, Plates and Shells”, first edition, Wiley Ernst & Sohn, Berlin, 2013, 696 pp. Nielsen, M.P., Hoang, L.C., “Limit Analysis and Concrete Plasticity”, third edition, CRC Press, Florida, 2010, 816 pp. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0137-00L | Steel Structures III: Advanced Steel and Composite Structures | O | 3 KP | 2G | A. Taras, U. Angst | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Vertiefen/Erweitern der theoretischen Grundlagen und konstruktiven Aspekte der Planung und Ausführung im Stahl- und Verbundbau. Spezielle Verbundbauteile und Nachweise. Teilverbund. Gebrauchstauglichkeit (Rissbildung, Schwingungen). Brand/Brandschutz, Feuerwiderstandberechnungen. Profilbleche und Kaltprofile. Kranbahnträger, Maste, Behälter. Glasbau und Leichtbau. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Die Studierenden vertiefen und erweitern in Stahlbau III die vorhandenen theoretischen Grundlagen und Kenntnisse der konstruktiven Belange des Stahlbaus und Verbundbaus. Der Fokus der Lehrveranstaltung liegt auf dem modernen, mehrgeschossigen Stahl- und Verbundhochbau sowie auf Spezialanwendungen des Stahlbaus. Die Studierenden lernen, wie komplexe Aufgaben der Tragwerksplanung im architektonisch geprägten Hochbau gelöst werden können, u.A. durch die Wahl von weitspannenden Flachdecken und extra-schlanken Stützen der Verbundbauweise, durch die Anwendung von tragenden Glaselementen und die Verwendung von Seilen. Sie lernen, wie sich Stahltragwerke bei Brandeinwirkung verhalten und wie sie gegen dieses Szenario zu schützen und zu bemessen sind. Schliesslich setzen sich die Studierenden mit speziellen Bauweisen auseinander (Kranbahnträger, Maste, Behälter), welche besondere Beanspruchungen aufnehmen und mit speziellen Berechnungsverfahren behandelt werden müssen. Durch die vermittelten Einblicke in die aktuelle Forschung und Normungstätigkeit werden die Studierenden auch über laufende Entwicklungen informiert und lernen, wie diese in ihre zukünftige Praxis einfliessen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | In Stahlbau III werden vertiefte theoretischen Grundlagen und Kenntnisse der konstruktiven Belange des Stahl-und Verbundbaus vermittelt, mit einem speziellen Fokus auf dem modernen, architektonisch geprägten Stahl- und Verbundhochbau sowie auf Spezialanwendungen des Stahlbaus. Es wird das Tragverhalten und die Bemessung spezieller Elemente der Verbundbauweise behandelt, swie z.B. Slim-Floor-Träger, ultraschlanke Verbundstützen sowie spezielle Verundanschlüsse. Zudem werden spezielle Themen der Gebraustauglichkeitsnachweise (Schwingungen, Rissbildung) und die Brandbemessung (Heissbemessung) behandelt. Im Kurs werden die Grundlagen des konstruktiven Glasbaus und Leichtbaus (Bauen mit Seilen und Membranen) behandelt. Schliesslich werden spezielle Bauteile und Bauweisen behandelt: Kranbahnträger, Maste, Behälter. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Folien und Skript. Ausgearbeitete Beispiele. Studienblätter und Formelsammlungen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Stahlbaukalender (verschiedene Ausgaben), Ernst + Sohn, Berlin | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Voraussetzungen: Stahlbau I und II | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0187-00L | Structural Reliability and Risk Analysis | W | 3 KP | 2G | S. Marelli | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Structural reliability aims at quantifying the probability of failure of systems due to uncertainties in their design, manufacturing and environmental conditions. Risk analysis combines this information with the consequences of failure in view of optimal decision making. The course presents the underlying probabilistic modelling and computational methods for reliability and risk assessment. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The goal of this course is to provide the students with a thorough understanding of the key concepts behind structural reliability and risk analysis. After this course the students will have refreshed their knowledge of probability theory and statistics to model uncertainties in view of engineering applications. They will be able to analyze the reliability of a structure and to use risk assessment methods for decision making under uncertain conditions. They will be aware of the state-of-the-art computational methods and software in this field. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Engineers are confronted every day to decision making under limited amount of information and uncertain conditions. When designing new structures and systems, the design codes such as SIA or Euro- codes usually provide a framework that guarantees safety and reliability. However the level of safety is not quantified explicitly, which does not allow the analyst to properly choose between design variants and evaluate a total cost in case of failure. In contrast, the framework of risk analysis allows one to incorporate the uncertainty in decision making. The first part of the course is a reminder on probability theory that is used as a main tool for reliability and risk analysis. Classical concepts such as random variables and vectors, dependence and correlation are recalled. Basic statistical inference methods used for building a probabilistic model from the available data, e.g. the maximum likelihood method, are presented. The second part is related to structural reliability analysis, i.e. methods that allow one to compute probabilities of failure of a given system with respect to prescribed criteria. The framework of reliability analysis is first set up. Reliability indices are introduced together with the first order-second moment method (FOSM) and the first order reliability method (FORM). Methods based on Monte Carlo simulation are then reviewed and illustrated through various examples. By-products of reliability analysis such as sensitivity measures and partial safety coefficients are derived and their links to structural design codes is shown. The reliability of structural systems is also introduced as well as the methods used to reassess existing structures based on new information. The third part of the course addresses risk assessment methods. Techniques for the identification of hazard scenarios and their representation by fault trees and event trees are described. Risk is defined with respect to the concept of expected utility in the framework of decision making. Elements of Bayesian decision making, i.e. pre-, post and pre-post risk assessment methods are presented. The course also includes a tutorial using the UQLab software dedicated to real world structural reliability analysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Slides of the lectures are available online every week. A printed version of the full set of slides is proposed to the students at the beginning of the semester. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Ang, A. and Tang, W.H, Probability Concepts in Engineering - Emphasis on Applications to Civil and Environmental Engineering, 2nd Edition, John Wiley & Sons, 2007. S. Marelli, R. Schöbi, B. Sudret, UQLab user manual - Structural reliability (rare events estimation), Report UQLab-V0.92-107. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Basic course on probability theory and statistics | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0157-01L | Structural Dynamics and Vibration Problems | W | 3 KP | 2G | M. Vassiliou, V. Ntertimanis | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Fundamentals of structural dynamics are presented. Computing the response of elastic single and multiple DOF structural systems subjected to harmonic, periodic, pulse, and impulse is discussed. Practical solutions to vibration problems in flexible structures under diverse excitations are developed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | After successful completion of this course the students will be able to: 1. Explain the dynamic equilibrium of structures under dynamic loading. 2. Use second-order differential equations to theoretically and numerically model the dynamic equilibrium of structural systems. 3. Model structural systems using single-degree-of-freedom and multiple-degree-of-freedom models. 4. Compute the dynamic response of structural system to harmonic, periodic, pulse, and impulse excitation using time-history and response-spectrum methods. 5. Use dynamics of structures to identify the basis for structural design code provisions related to dynamic loading. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | This is a course on structural dynamics, an extension of structural analysis for loads that induce significant inertial forces and vibratory response of structures. Dynamic responses of elastic and inelastic single-degree-of-freedom and multiple-degree-of-freedom structural systems subjected to harmonic, periodic, pulse, and impulse excitation are discussed. Theoretical background and engineering guidelines for practical solutions to vibration problems in flexible structures caused by humans, machinery, wind or explosions are presented. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | The class will be taught mainly on the blackboard. Accompanying electronic material will be uploaded to ILIAS and available through myStudies. All the material can be found in Anil Chopra's comprehensive textbook given in the literature below. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Dynamics of Structures: Theory and Applications to Earthquake Engineering, 4th edition, Anil Chopra, Prentice Hall, 2014 (Global Edition), ISBN-10: 9780273774242 Vibration Problems in Structures: Practical Guidelines, Hugo Bachmann et al., Birkhäuser, Basel, 1995 Weber B., Tragwerksdynamik. http://e-collection.ethbib.ethz.ch/cgi-bin/show.pl?type=lehr&nr=76 .ETH Zürich, 2002. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Knowledge of the fundamentals in structural analysis, and in structural design of reinforced concrete, steel and/or wood structures is mandatory. Working knowledge of matrix algebra and ordinary differential equations is required. Familiarity with Matlab and with structural analysis computer software is desirable. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-8015-00L | Moisture Transport in Porous Media | W | 3 KP | 2G | J. Carmeliet, L. Fei, J. Huang, J. Zhao | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Moisture transport and related degradation processes in porous materials; experimental determination of moisture transport properties; theory and application of pore network model for two-phase transport in porous media; flow in cracked and deformable porous media. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | - Basic knowledge of moisture transport and related degradation processes in porous materials - Knowledge of experimental determination of moisture transport properties - Knowledge of pore network model and application to two-phase invasion percolation simulation - Application of knowledge to moisture transport in cracked materials and flow in deformable porous media | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | 1. Introduction Moisture damage: problem statement, durability Applications: building materials, soil science, geoscience 2. Moisture transport: theory and application Description of moisture transport Determination of moisture transport properties Liquid transport in cracked materials, flow and transport in deformable porous media 3. Pore network model: theory and application Single- and two-phase pore network model: quasi-static and dynamic Exercise on quasi-static two-phase pore network model: invasion pattern, capillary pressure curve Application of pore network model in two-phase transport | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Handouts, supporting material and exercises are provided online via Moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | All material is provided online via Moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0167-01L | Fibre Composite Materials in Structural Engineering | W | 3 KP | 2G | M. Motavalli | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | 1) Lamina and Laminate Theory 2) FRP Manufacturing and Testing Methods 3) Design and Application of Externally Bonded Reinforcement to Concrete, Timber, and metallic Structures 4) FRP Reinforced Concrete, All FRP Structures 5) Measurement Techniques and Structural Health Monitoring | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | At the end of the course, you shall be able to 1) Design advanced FRP composites for your structures, 2) To consult owners and clients with necessray testing and SHM techniques for FRP structures, 3) Continue your education as a phd student in this field. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Fibre Reinforced Polymer (FRP) composites are increasingly being used in civil infrastructure applications, such as reinforcing rods, tendons and FRP profiles as well as wraps for seismic upgrading of columns and repair of deteriorated structures. The objective of this course is on one hand to provide new generation of engineering students with an overall awareness of the application and design of FRP reinforcing materials for internal and external strengthening (repair) of reinforced concrete structures. The FRP strengthening of other structures such as metallic and timber will also be shortly discussed. On the other hand the course will provide guidance to students seeking additional information on the topic. Many practical cases will be presented analysed and discussed. An ongoing structural health monitoring of these new materials is necessary to ensure that the structures are performing as planned, and that the safety and integrity of structures is not compromised. The course outlines some of the primary considerations to keep in mind when designing and utilizing structural health monitoring technologies. During the course, students will have the opportunity to design FRP strengthened concrete beams and columns, apply the FRP by themselves, and finally test their samples up to failure. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Power Point Presentations available online at www.empa.ch/abt303 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | 1) Eckold G., Design and Manufacture of Composite Structures, ISBN 1 85573 051 0, Woodhead Publishing Limited, Cambridge, England, 1994 2) Lawrence C. Bank, Composites for Construction: Structural Design with FRP Materials, John Wiley & Sons, ISBN-13: 978-0471-68126-7 3) fib bulletin 19, Externally applied FRP reinforcement for concrete structures, technical report, 2019 4) SIA166 (2004) Klebebewehrungen (Externally bonded reinforcement). Schweizerischer Ingenieur- und Architektenverein SIA. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | 1) Laboratory Tours and Demonstrations: Empa Structural Engineering Laboratory including FRP Composites, Shape Memory Alloys, Timber Elements, Large Scale Testing of Structural Components 2) Working with Composite Materials in the Laboratory (application, testing, etc) |
- Seite 1 von 7 Alle