Search result: Catalogue data in Autumn Semester 2021
Physics Bachelor ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
» Minor Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
» GESS Science in Perspective | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
» First Year Compulsory Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
401-1261-07L | Analysis I: One Variable ![]() | O | 10 credits | 6V + 3U | M. Einsiedler | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to the differential and integral calculus in one real variable: fundaments of mathematical thinking, numbers, sequences, basic point set topology, continuity, differentiable functions, ordinary differential equations, Riemann integration. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The ability to work with the basics of calculus in a mathematically rigorous way. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | H. Amann, J. Escher: Analysis I https://link.springer.com/book/10.1007/978-3-7643-7756-4 J. Appell: Analysis in Beispielen und Gegenbeispielen https://link.springer.com/book/10.1007/978-3-540-88903-8 R. Courant: Vorlesungen über Differential- und Integralrechnung https://link.springer.com/book/10.1007/978-3-642-61988-5 O. Forster: Analysis 1 https://link.springer.com/book/10.1007/978-3-658-00317-3 H. Heuser: Lehrbuch der Analysis https://link.springer.com/book/10.1007/978-3-322-96828-9 K. Königsberger: Analysis 1 https://link.springer.com/book/10.1007/978-3-642-18490-1 W. Walter: Analysis 1 https://link.springer.com/book/10.1007/3-540-35078-0 V. Zorich: Mathematical Analysis I (englisch) https://link.springer.com/book/10.1007/978-3-662-48792-1 A. Beutelspacher: "Das ist o.B.d.A. trivial" https://link.springer.com/book/10.1007/978-3-8348-9599-8 H. Schichl, R. Steinbauer: Einführung in das mathematische Arbeiten https://link.springer.com/book/10.1007/978-3-642-28646-9 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-1701-00L | Physics I | O | 7 credits | 4V + 2U | K. Ensslin | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course gives a first introduction to Physics with an emphasis on classical mechanics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Acquire knowledge of the basic principles regarding the physics of classical mechanics. Skills in solving physics problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
252-0847-00L | Computer Science ![]() | O | 5 credits | 2V + 2U | R. Sasse, F. Friedrich Wicker | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course covers the fundamental concepts of computer programming with a focus on systematic algorithmic problem solving. Taught language is C++. No programming experience is required. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Primary educational objective is to learn programming with C++. After having successfully attended the course, students have a good command of the mechanisms to construct a program. They know the fundamental control and data structures and understand how an algorithmic problem is mapped to a computer program. They have an idea of what happens "behind the scenes" when a program is translated and executed. Secondary goals are an algorithmic computational thinking, understanding the possibilities and limits of programming and to impart the way of thinking like a computer scientist. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course covers fundamental data types, expressions and statements, (limits of) computer arithmetic, control statements, functions, arrays, structural types and pointers. The part on object orientation deals with classes, inheritance and polymorphism; simple dynamic data types are introduced as examples. In general, the concepts provided in the course are motivated and illustrated with algorithms and applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | English lecture notes will be provided during the semester. The lecture notes and the lecture slides will be made available for download on the course web page. Exercises are solved and submitted online. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Bjarne Stroustrup: Einführung in die Programmierung mit C++, Pearson Studium, 2010 Stephen Prata, C++ Primer Plus, Sixth Edition, Addison Wesley, 2012 Andrew Koenig and Barbara E. Moo: Accelerated C++, Addison-Wesley, 2000 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
401-1151-00L | Linear Algebra I ![]() | O | 7 credits | 4V + 2U | R. Pink | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to the theory of vector spaces for students of mathematics or physics: Basics, vector spaces, linear transformations, solutions of systems of equations, matrices, determinants, endomorphisms, eigenvalues, eigenvectors. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | - Mastering basic concepts of Linear Algebra - Introduction to mathematical methods | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | - Basics - Vectorspaces and linear maps - Systems of linear equations and matrices - Determinants - Endomorphisms and eigenvalues | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | We publish a summary of the content of the lecture course on the homepage: http://metaphor.ethz.ch/x/2021/hs/401-1151-00L/ Besides this we recommend one textbook about Linear Algebra, for instance one of these: - G. Fischer: Lineare Algebra. Springer-Verlag 2014. Link: http://link.springer.com/book/10.1007/978-3-658-03945-5 - K. Jänich: Lineare Algebra. Springer-Verlag 2004. Link: http://link.springer.com/book/10.1007/978-3-662-08375-8 - H.-J. Kowalsky, G. O. Michler: Lineare Algebra. Walter de Gruyter 2003. Link: https://www.degruyter.com/search?query=kowalsky+michler - S. H. Friedberg, A. J. Insel and L. E. Spence: Linear Algebra. Pearson 2003. Link In addition we recommend this general introduction into studying mathematics: - H. Schichl and R. Steinbauer: Einführung in das mathematische Arbeiten. Springer-Verlag 2012. Link: http://link.springer.com/book/10.1007%2F978-3-642-28646-9 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
401-2303-00L | Complex Analysis | O | 6 credits | 3V + 2U | T. H. Willwacher | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Complex functions of one variable, Cauchy-Riemann equations, Cauchy theorem and integral formula, singularities, residue theorem, index of closed curves, analytic continuation, special functions, conformal mappings, Riemann mapping theorem. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Working knowledge of functions of one complex variables; in particular applications of the residue theorem. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | B. Palka: "An introduction to complex function theory." Undergraduate Texts in Mathematics. Springer-Verlag, 1991. E.M. Stein, R. Shakarchi: Complex Analysis. Princeton University Press, 2010 Th. Gamelin: Complex Analysis. Springer 2001 E. Titchmarsh: The Theory of Functions. Oxford University Press D. Salamon: "Funktionentheorie". Birkhauser, 2011. (In German) L. Ahlfors: "Complex analysis. An introduction to the theory of analytic functions of one complex variable." International Series in Pure and Applied Mathematics. McGraw-Hill Book Co. K.Jaenich: Funktionentheorie. Springer Verlag R.Remmert: Funktionentheorie I. Springer Verlag E.Hille: Analytic Function Theory. AMS Chelsea Publications | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
401-2333-00L | Methods of Mathematical Physics I ![]() | O | 6 credits | 3V + 2U | G. Felder | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Fourier series. Linear partial differential equations of mathematical physics. Fourier transform. Special functions and eigenfunction expansions. Distributions. Selected problems from quantum mechanics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-2883-00L | Physics III | O | 7 credits | 4V + 2U | U. Keller | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introductory course on quantum and atomic physics including optics and statistical physics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | A basic introduction to quantum and atomic physics, including basics of optics and equilibrium statistical physics. The course will focus on the relation of these topics to experimental methods and observations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Einführung in die Quantenphysik: Planck’sche Strahlung (Wärmestrahlung), Photonen, Photoelektrischer Effekt, Thomson and Rutherford Streuung, Compton Streuung, Bohrsche Atommodell, de-Broglie Materiewellen. Optik/Wellenoptik: Linsen, Abbildungssysteme, Brechung und Fermatsches Prinzip, Beugung, Interferenz, Fabry-Perot, Interferometer, Spektrometer. Quantenmechanik: Dualismus Teilchen-Welle, Wellenfunktionen, Operatoren, Schrödinger-Gleichung, Potentialstufe und Potentialkasten, harmonischer Oszillator Quantenmechanische Atomphysik: Coulombpotential in der Schrödinger-Gleichung, Wasserstoffatom, Atomorbitale, Spin, Zeeman-Effekt, Spin-Bahn Kopplung, Mehrelektronenatome, Röntgenspektren, Auswahlregeln, Absorption und Emission von Strahlung, Molekülorbitale und Kovalente Bindung Statistische Physik: Wahrscheinlichkeitsverteilungen, Ideales Gas, Äquipartitionsgesetz, Zustandsdichte, Maxwell-Boltzmann-Verteilung, Fermi-Dirac-Statistik für Fermionen, Bose-Einstein-Statistik für Bosonen, Elektronengas, Herleitung Planck’sche Strahlungsgesetz (Photonengas) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Im Rahmen der Veranstaltung werden die Folien in elektronischer Form zur Verfügung gestellt. Ergänzendes Buch wird als Pflichtlektüre empfohlen. Es wird kein Skript in der Vorlesung verteilt. Wir werden die Quantenmechanik anhand der Schrödinger-Gleichung mit den klassischen elektro-magnetischen Wellen vergleichen. Zu den klassischen Wellen werden Ergänzungsunterlagen verteilt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | M. Alonso, E. J. Finn Quantenphysik und Statistische Physik R. Oldenbourg Verlag, München 5. Auflage ISBN 978-3-486-71340-4 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-2203-01L | Classical Mechanics ![]() | O | 7 credits | 4V + 2U | R. Renner | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | A conceptual introduction to theoretical physics: Newtonian mechanics, central force problem, oscillations, Lagrangian mechanics, symmetries and conservation laws, spinning top, relativistic space-time structure, particles in an electromagnetic field, Hamiltonian mechanics, canonical transformations, integrable systems, Hamilton-Jacobi equation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Fundamental understanding of the description of Mechanics in the Lagrangian and Hamiltonian formulation. Detailed understanding of important applications, in particular, the Kepler problem, the physics of rigid bodies (spinning top) and of oscillatory systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0205-00L | Quantum Mechanics I | O | 10 credits | 3V + 2U | M. Gaberdiel | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | General structure of quantum theory: Hilbert spaces, states and observables, equations of motion, Heisenberg uncertainty relation, symmetries, angular momentum addition, EPR paradox, Schrödinger and Heisenberg picture. Applications: simple potentials in wave mechanics, scattering and resonance, harmonic oscillator, hydrogen atom, and perturbation theory. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Introduction to single-particle quantum mechanics. Familiarity with basic ideas and concepts (quantisation, operator formalism, symmetries, angular momentum, perturbation theory) and generic examples and applications (bound states, tunneling, hydrogen atom, harmonic oscillator). Ability to solve simple problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The beginnings of quantum theory with Planck, Einstein and Bohr; Wave mechanics; Simple examples; The formalism of quantum mechanics (states and observables, Hilbert spaces and operators, the measurement process); Heisenberg uncertainty relation; Harmonic oscillator; Symmetries (in particular rotations); Hydrogen atom; Angular momentum addition; Quantum mechanics and classical physics (EPR paradoxon and Bell's inequality); Perturbation theory. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Auf Moodle, in deutscher Sprache | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | G. Baym, Lectures on Quantum Mechanics E. Merzbacher, Quantum Mechanics L.I. Schiff, Quantum Mechanics R. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals J.J. Sakurai: Modern Quantum Mechanics A. Messiah: Quantum Mechanics I S. Weinberg: Lectures on Quantum Mechanics | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fostered competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0263-00L | Astrophysics I | W | 10 credits | 3V + 2U | S. Lilly | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This introductory course will develop basic concepts in astrophysics as applied to the understanding of the physics of planets, stars, galaxies, and the Universe. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The course provides an overview of fundamental concepts and physical processes in astrophysics with the dual goals of: i) illustrating physical principles through a variety of astrophysical applications; and ii) providing an overview of research topics in astrophysics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0255-00L | Introduction to Solid State Physics | W | 10 credits | 3V + 2U | C. Degen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course provides an introduction to solid state physics, covering several topics that are later discussed in more detail in other more specialized lectures. The central topics are: solids and their lattice structures; interatomic bindings; lattice dynamics, electronic properties of insulators, metals, semiconductors, transport properties, magnetism, superconductivity. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Introduction to Solid State Physics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course provides an introduction to solid state physics, covering several topics that are later discussed in more detail in other more specialized lectures. The central topics are: solids and their lattice structures; interatomic bindings; lattice dynamics, thermal properties of insulators; metals (classical and quantum mechanical description of electronic states, thermal and transport properties of metals); semiconductors (bandstructure and n/p-type doping); magnetism, superconductivity. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | The script will be available on moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Ibach & Lüth, Festkörperphysik C. Kittel, Festkörperphysik Ashcroft & Mermin, Festkörperphysik W. Känzig, Kondensierte Materie | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Voraussetzungen: Physik I, II, III wünschenswert | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0000-01L | Physics Lab 1 ![]() Enrollment is only possible under https://www.lehrbetrieb.ethz.ch/laborpraktika. No registration required via myStudies. For further information visit: https://ap.phys.ethz.ch Only students from 3rd Semester BSc Physics on are admitted to Physics Lab 2. | O | 5 credits | 1V + 4P | A. Eichler, M. Kroner | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introductory lab course in experimental physics with accompanying lecture | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The overarching topic of the student lab and of the corresponding lecture is an understanding of the fundamental challenges in experimental physics. The following aspects are particularly important: - Why does one conduct experiments, and how should an experiment be planned? - How does one set up an experiment? What are the important characteristics of measurement instruments and methods? - Introduction to basic statistical data analysis - Critical interpretation of measurement results - Scientific communication, reporting, graphic representation of results - Ethical aspects of experimental research and reporting | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Experiments with examples from mechanics, optics, thermodynamics, electricity and radiation. Accompanying lecture to offer a better understanding of basic statistics and of reporting techniques. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Anleitung zum Physikalischen Praktikum; Vorlesungszusammenfassung | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | 9 Experiments have to be conducted (typically in teams of 2). In the first week, only an introductory event is taking place in the lecture hall. This event provides relevant information regarding safety and organisational matters (e.g. testat conditions). Students must pass an online safety test to be allowed to conduct experiments in the lab. Every student must provide an individually adjusted safety goggle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0000-09L | Physics Lab 3 ![]() | O | 7 credits | 13P | M. Donegà, S. Gvasaliya | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This laboratory course provides basic training of experimental skills. These are experimental design, implementation, measurement, data analysis and interpretation, as well as error analysis. The experimental work has to be complemented by a concise written report, which trains the scientific writing skills. Manuals for the individual experiments are available in English. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Students learn to independently perform advanced experiments and document them scientifically correct. Students are required to attend a safety lecture on the first day of the course and pass the corresponding online moodle-test before being allowed to access the laboratory rooms and perform the experiments. The following aspects are emphasized: - understanding complicated physical phenomena - structured approach to experiments with complex instruments - various practical aspects of experimenting and determining uncertainties - learning the relevant statistical methods for data analysis - interpretation of measurements and uncertainties - describing the experiments and the results in a scientifically proper manner, in direct analogy to publishing - ethical aspects of experimental research and scientific communication | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | We offer experiments covering the following topics: Basic topics from mechanics, optics, thermodynamics, electromagnetism and electronics; as well as central topics from nuclear and particle physics, quantum electronics, quantum mechanics, solid state physics and astrophysics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Instructions for experiments are available in English. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | From a variety of over 50 experiments, students have to perform 4 experiments covering different topics. The experimental work is complemented by writing a scientific report. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fostered competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() To organise a semester project take contact with one of the instructors. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0210-BSL | Proseminar Theoretical Physics ![]() ![]() The number of participants is limited. | W | 8 credits | 4S | Supervisors | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | A guided self-study of original papers and of advanced textbooks in theoretical physics. Within the general topic, determined each semester, participants give a presentation on a particular subject and deliver a written report. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0217-BSL | Semester Project in Theoretical Physics ![]() | W | 8 credits | 15A | Supervisors | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course unit is an alternative if no suitable "Proseminar Theoretical Physics" is available of if the proseminar is already overbooked. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Die Leistungskontrolle erfolgt aufgrund eines oder mehrerer schriftlicher Berichte bzw. einer schriftlichen Arbeit. Vorträge können ein zusätzlicher Bestandteil der Leistungskontrolle sein. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0215-BSL | Experimental Semester Project in Physics ![]() ![]() | W | 8 credits | 15A | Supervisors | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The aim of the project is to give the student experience in working in a research environment, carrying out physics experiments, analysing and interpreting the resulting data. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Die Leistungskontrolle erfolgt aufgrund eines oder mehrerer schriftlicher Berichte bzw. einer schriftlichen Arbeit. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0719-BSL | Particle Physics at PSI (Paul Scherrer Institute) ![]() | W | 8 credits | 15P | A. Soter, A. S. Antognini | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | During semester breaks 6-12 students stay for 3 weeks at PSI and participate in a hands-on course on experimental particle physics. A small real experiment is performed in common, including apparatus design, construction, running and data analysis. The course includes some lectures, but the focus lies on the practical aspects of experimenting. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Students learn all the different steps it takes to perform a complete particle physics experiment in a small team. They acquire skills to do this themselves in the team, including design, construction, data taking and data analysis. |
Page 1 of 3
All