# Suchergebnis: Katalogdaten im Herbstsemester 2020

Informatik Master | ||||||

Master-Studium (Studienreglement 2020) | ||||||

Ergänzungen | ||||||

Ergänzung in Computer Graphics | ||||||

Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|

252-0543-01L | Computer Graphics | W | 8 KP | 3V + 2U + 2A | M. Gross, M. Papas | |

Kurzbeschreibung | This course covers some of the fundamental concepts of computer graphics generation of photorealistic images from digital representations of 3D scenes and image-based methods for recovering digital scene representations from captured images. | |||||

Lernziel | At the end of the course the students will be able to build a rendering system. The students will study the basic principles of rendering and image synthesis. In addition, the course is intended to stimulate the students' curiosity to explore the field of computer graphics in subsequent courses or on their own. | |||||

Inhalt | This course covers fundamental concepts of modern computer graphics. Students will learn about 3D object representations and the details of how to generate photorealistic images from digital representations of 3D scenes. Starting with an introduction to 3D shape modeling, geometry representation and texture mapping, we will move on to the physics of light transport, acceleration structures, appearance modeling and Monte Carlo integration. We will apply these principles for computing light transport of direct and global illumination due to surfaces and participating media. We will end with an overview of modern image-based capture and image synthesis methods, covering topics such as geometry and material capture, light-fields and depth-image based rendering. | |||||

Skript | no | |||||

Literatur | Books: High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting Multiple view geometry in computer vision Physically Based Rendering: From Theory to Implementation | |||||

Voraussetzungen / Besonderes | Prerequisites: Fundamentals of calculus and linear algebra, basic concepts of algorithms and data structures, programming skills in C++, Visual Computing course recommended. The programming assignments will be in C++. This will not be taught in the class. | |||||

252-0546-00L | Physically-Based Simulation in Computer Graphics | W | 5 KP | 2V + 1U + 1A | V. da Costa de Azevedo, B. Solenthaler | |

Kurzbeschreibung | Die Vorlesung gibt eine Einführung in das Gebiet der physikalisch basierten Animation in der Computer Graphik und einen Überblick über fundamentale Methoden und Algorithmen. In den praktischen Übungen werden drei Aufgabenblätter in kleinen Gruppen bearbeitet. Zudem sollen in einem Programmierprojekt die Vorlesungsinhalte in einem 3D Spiel oder einer vergleichbaren Anwendung umgesetzt werden. | |||||

Lernziel | Die Vorlesung gibt eine Einführung in das Gebiet der physikalisch basierten Animation in der Computer Graphik und einen Überblick über fundamentale Methoden und Algorithmen. In den praktischen Übungen werden drei Aufgabenblätter in kleinen Gruppen bearbeitet. Zudem sollen in einem Programmierprojekt die Vorlesungsinhalte in einem 3D Spiel oder einer vergleichbaren Anwendung umgesetzt werden. | |||||

Inhalt | In der Vorlesung werden Themen aus dem Gebiet der physikalisch-basierten Modellierung wie Partikel-Systeme, Feder-Masse Modelle, die Methoden der Finiten Differenzen und der Finiten Elemente behandelt. Diese Methoden und Techniken werden verwendet um deformierbare Objekte oder Flüssigkeiten zu simulieren mit Anwendungen in Animationsfilmen, 3D Computerspielen oder medizinischen Systemen. Es werden auch Themen wie Starrkörperdynamik, Kollisionsdetektion und Charakteranimation behandelt. | |||||

Voraussetzungen / Besonderes | Basiskenntnisse in Analysis und Physik, Algorithmen und Datenstrukturen und der Programmierung in C++. Kenntnisse auf den Gebieten Numerische Mathematik sowie Gewoehnliche und Partielle Differentialgleichungen sind von Vorteil, werden aber nicht vorausgesetzt. | |||||

Ergänzung in Computer Vision | ||||||

Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |

263-3210-00L | Deep Learning | W | 8 KP | 3V + 2U + 2A | T. Hofmann | |

Kurzbeschreibung | Deep learning is an area within machine learning that deals with algorithms and models that automatically induce multi-level data representations. | |||||

Lernziel | In recent years, deep learning and deep networks have significantly improved the state-of-the-art in many application domains such as computer vision, speech recognition, and natural language processing. This class will cover the mathematical foundations of deep learning and provide insights into model design, training, and validation. The main objective is a profound understanding of why these methods work and how. There will also be a rich set of hands-on tasks and practical projects to familiarize students with this emerging technology. | |||||

Voraussetzungen / Besonderes | This is an advanced level course that requires some basic background in machine learning. More importantly, students are expected to have a very solid mathematical foundation, including linear algebra, multivariate calculus, and probability. The course will make heavy use of mathematics and is not (!) meant to be an extended tutorial of how to train deep networks with tools like Torch or Tensorflow, although that may be a side benefit. The participation in the course is subject to the following condition: - Students must have taken the exam in Advanced Machine Learning (252-0535-00) or have acquired equivalent knowledge, see exhaustive list below: Advanced Machine Learning Link Computational Intelligence Lab Link Introduction to Machine Learning Link Statistical Learning Theory Link Computational Statistics Link Probabilistic Artificial Intelligence Link | |||||

263-5902-00L | Computer Vision | W | 8 KP | 3V + 1U + 3A | M. Pollefeys, S. Tang, V. Ferrari | |

Kurzbeschreibung | The goal of this course is to provide students with a good understanding of computer vision and image analysis techniques. The main concepts and techniques will be studied in depth and practical algorithms and approaches will be discussed and explored through the exercises. | |||||

Lernziel | The objectives of this course are: 1. To introduce the fundamental problems of computer vision. 2. To introduce the main concepts and techniques used to solve those. 3. To enable participants to implement solutions for reasonably complex problems. 4. To enable participants to make sense of the computer vision literature. | |||||

Inhalt | Camera models and calibration, invariant features, Multiple-view geometry, Model fitting, Stereo Matching, Segmentation, 2D Shape matching, Shape from Silhouettes, Optical flow, Structure from motion, Tracking, Object recognition, Object category recognition | |||||

Voraussetzungen / Besonderes | It is recommended that students have taken the Visual Computing lecture or a similar course introducing basic image processing concepts before taking this course. | |||||

Ergänzung in Data Management | ||||||

Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |

252-0535-00L | Advanced Machine Learning | W | 10 KP | 3V + 2U + 4A | J. M. Buhmann, C. Cotrini Jimenez | |

Kurzbeschreibung | Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects. | |||||

Lernziel | Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensible to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data. | |||||

Inhalt | The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data. Topics covered in the lecture include: Fundamentals: What is data? Bayesian Learning Computational learning theory Supervised learning: Ensembles: Bagging and Boosting Max Margin methods Neural networks Unsupservised learning: Dimensionality reduction techniques Clustering Mixture Models Non-parametric density estimation Learning Dynamical Systems | |||||

Skript | No lecture notes, but slides will be made available on the course webpage. | |||||

Literatur | C. Bishop. Pattern Recognition and Machine Learning. Springer 2007. R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley & Sons, second edition, 2001. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, 2001. L. Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer, 2004. | |||||

Voraussetzungen / Besonderes | The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments. Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution. PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points. | |||||

263-2800-00L | Design of Parallel and High-Performance Computing | W | 9 KP | 3V + 2U + 3A | T. Hoefler, M. Püschel | |

Kurzbeschreibung | Advanced topics in parallel and high-performance computing. | |||||

Lernziel | Understand concurrency paradigms and models from a higher perspective and acquire skills for designing, structuring and developing possibly large parallel high-performance software systems. Become able to distinguish parallelism in problem space and in machine space. Become familiar with important technical concepts and with concurrency folklore. | |||||

Inhalt | We will cover all aspects of high-performance computing ranging from architecture through programming up to algorithms. We will start with a discussion of caches and cache coherence in practical computer systems. We will dive into parallel programming concepts such as memory models, locks, and lock-free. We will cover performance modeling and parallel design principles as well as basic parallel algorithms. | |||||

Voraussetzungen / Besonderes | This class is intended for the Computer Science Masters curriculum. Students must have basic knowledge in programming in C as well as computer science theory. Students should be familiar with the material covered in the ETH computer science first-year courses "Parallele Programmierung (parallel programming)" and "Algorithmen und Datenstrukturen (algorithm and data structures)" or equivalent courses. | |||||

263-3010-00L | Big Data | W | 10 KP | 3V + 2U + 4A | G. Fourny | |

Kurzbeschreibung | The key challenge of the information society is to turn data into information, information into knowledge, knowledge into value. This has become increasingly complex. Data comes in larger volumes, diverse shapes, from different sources. Data is more heterogeneous and less structured than forty years ago. Nevertheless, it still needs to be processed fast, with support for complex operations. | |||||

Lernziel | This combination of requirements, together with the technologies that have emerged in order to address them, is typically referred to as "Big Data." This revolution has led to a completely new way to do business, e.g., develop new products and business models, but also to do science -- which is sometimes referred to as data-driven science or the "fourth paradigm". Unfortunately, the quantity of data produced and available -- now in the Zettabyte range (that's 21 zeros) per year -- keeps growing faster than our ability to process it. Hence, new architectures and approaches for processing it were and are still needed. Harnessing them must involve a deep understanding of data not only in the large, but also in the small. The field of databases evolves at a fast pace. In order to be prepared, to the extent possible, to the (r)evolutions that will take place in the next few decades, the emphasis of the lecture will be on the paradigms and core design ideas, while today's technologies will serve as supporting illustrations thereof. After visiting this lecture, you should have gained an overview and understanding of the Big Data landscape, which is the basis on which one can make informed decisions, i.e., pick and orchestrate the relevant technologies together for addressing each business use case efficiently and consistently. | |||||

Inhalt | This course gives an overview of database technologies and of the most important database design principles that lay the foundations of the Big Data universe. We take the monolithic, one-machine relational stack from the 1970s, smash it down and rebuild it on top of large clusters: starting with distributed storage, and all the way up to syntax, models, validation, processing, indexing, and querying. A broad range of aspects is covered with a focus on how they fit all together in the big picture of the Big Data ecosystem. No data is harmed during this course, however, please be psychologically prepared that our data may not always be in third normal form. - physical storage: distributed file systems (HDFS), object storage(S3), key-value stores - logical storage: document stores (MongoDB), column stores (HBase), graph databases (neo4j), data warehouses (ROLAP) - data formats and syntaxes (XML, JSON, RDF, Turtle, CSV, XBRL, YAML, protocol buffers, Avro) - data shapes and models (tables, trees, graphs, cubes) - type systems and schemas: atomic types, structured types (arrays, maps), set-based type systems (?, *, +) - an overview of functional, declarative programming languages across data shapes (SQL, XQuery, JSONiq, Cypher, MDX) - the most important query paradigms (selection, projection, joining, grouping, ordering, windowing) - paradigms for parallel processing, two-stage (MapReduce) and DAG-based (Spark) - resource management (YARN) - what a data center is made of and why it matters (racks, nodes, ...) - underlying architectures (internal machinery of HDFS, HBase, Spark, neo4j) - optimization techniques (functional and declarative paradigms, query plans, rewrites, indexing) - applications. Large scale analytics and machine learning are outside of the scope of this course. | |||||

Literatur | Papers from scientific conferences and journals. References will be given as part of the course material during the semester. | |||||

Voraussetzungen / Besonderes | This course, in the autumn semester, is only intended for: - Computer Science students - Data Science students - CBB students with a Computer Science background Mobility students in CS are also welcome and encouraged to attend. If you experience any issue while registering, please contact the study administration and you will be gladly added. For students of all other departements interested in this fascinating topic: I would love to have you visit my lectures as well! So there is a series of two courses specially designed for you: - "Information Systems for Engineers" (SQL, relational databases): this Fall - "Big Data for Engineers" (similar to Big Data, but adapted for non Computer Scientists): Spring 2021 There is no hard dependency, so you can either them in any order, but it may be more enjoyable to start with Information Systems for Engineers. Students who successfully completed Big Data for Engineers are not allowed to enrol in the course Big Data. | |||||

263-3210-00L | Deep Learning | W | 8 KP | 3V + 2U + 2A | T. Hofmann | |

Kurzbeschreibung | Deep learning is an area within machine learning that deals with algorithms and models that automatically induce multi-level data representations. | |||||

Lernziel | In recent years, deep learning and deep networks have significantly improved the state-of-the-art in many application domains such as computer vision, speech recognition, and natural language processing. This class will cover the mathematical foundations of deep learning and provide insights into model design, training, and validation. The main objective is a profound understanding of why these methods work and how. There will also be a rich set of hands-on tasks and practical projects to familiarize students with this emerging technology. | |||||

Voraussetzungen / Besonderes | This is an advanced level course that requires some basic background in machine learning. More importantly, students are expected to have a very solid mathematical foundation, including linear algebra, multivariate calculus, and probability. The course will make heavy use of mathematics and is not (!) meant to be an extended tutorial of how to train deep networks with tools like Torch or Tensorflow, although that may be a side benefit. The participation in the course is subject to the following condition: - Students must have taken the exam in Advanced Machine Learning (252-0535-00) or have acquired equivalent knowledge, see exhaustive list below: Advanced Machine Learning Link Computational Intelligence Lab Link Introduction to Machine Learning Link Statistical Learning Theory Link Computational Statistics Link Probabilistic Artificial Intelligence Link | |||||

263-3845-00L | Data Management Systems | W | 8 KP | 3V + 1U + 3A | G. Alonso | |

Kurzbeschreibung | The course will cover the implementation aspects of data management systems using relational database engines as a starting point to cover the basic concepts of efficient data processing and then expanding those concepts to modern implementations in data centers and the cloud. | |||||

Lernziel | The goal of the course is to convey the fundamental aspects of efficient data management from a systems implementation perspective: storage, access, organization, indexing, consistency, concurrency, transactions, distribution, query compilation vs interpretation, data representations, etc. Using conventional relational engines as a starting point, the course will aim at providing an in depth coverage of the latest technologies used in data centers and the cloud to implement large scale data processing in various forms. | |||||

Inhalt | The course will first cover fundamental concepts in data management: storage, locality, query optimization, declarative interfaces, concurrency control and recovery, buffer managers, management of the memory hierarchy, presenting them in a system independent manner. The course will place an special emphasis on understating these basic principles as they are key to understanding what problems existing systems try to address. It will then proceed to explore their implementation in modern relational engines supporting SQL to then expand the range of systems used in the cloud: key value stores, geo-replication, query as a service, serverless, large scale analytics engines, etc. | |||||

Literatur | The main source of information for the course will be articles and research papers describing the architecture of the systems discussed. The list of papers will be provided at the beginning of the course. | |||||

Ergänzung in Information Security | ||||||

Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |

252-0463-00L | Security Engineering | W | 7 KP | 2V + 2U + 2A | D. Basin, S. Krstic | |

Kurzbeschreibung | Subject of the class are engineering techniques for developing secure systems. We examine concepts, methods and tools, applied within the different activities of the SW development process to improve security of the system. Topics: security requirements&risk analysis, system modeling&model-based development methods, implementation-level security, and evaluation criteria for secure systems | |||||

Lernziel | Security engineering is an evolving discipline that unifies two important areas: software engineering and security. Software Engineering addresses the development and application of methods for systematically developing, operating, and maintaining, complex, high-quality software. Security, on the other hand, is concerned with assuring and verifying properties of a system that relate to confidentiality, integrity, and availability of data. The goal of this class is to survey engineering techniques for developing secure systems. We will examine concepts, methods, and tools that can be applied within the different activities of the software development process, in order to improve the security of the resulting systems. Topics covered include * security requirements & risk analysis, * system modeling and model-based development methods, * implementation-level security, and * evaluation criteria for the development of secure systems | |||||

Inhalt | Security engineering is an evolving discipline that unifies two important areas: software engineering and security. Software Engineering addresses the development and application of methods for systematically developing, operating, and maintaining, complex, high-quality software. Security, on the other hand, is concerned with assuring and verifying properties of a system that relate to confidentiality, integrity, and availability of data. The goal of this class is to survey engineering techniques for developing secure systems. We will examine concepts, methods, and tools that can be applied within the different activities of the software development process, in order to improve the security of the resulting systems. Topics covered include * security requirements & risk analysis, * system modeling and model-based development methods, * implementation-level security, and * evaluation criteria for the development of secure systems Modules taught: 1. Introduction - Introduction of Infsec group and speakers - Security meets SW engineering: an introduction - The activities of SW engineering, and where security fits in - Overview of this class 2. Requirements Engineering: Security Requirements and some Analysis - overview: functional and non-functional requirements - use cases, misuse cases, sequence diagrams - safety and security - FMEA, FTA, attack trees 3. Modeling in the design activities - structure, behavior, and data flow - class diagrams, statecharts 4. Model-driven security for access control (design) - SecureUML as a language for access control - Combining Design Modeling Languages with SecureUML - Semantics, i.e., what does it all mean, - Generation - Examples and experience 5. Model-driven security (Part II) - Continuation of above topics 6. Security patterns (design and implementation) 7. Implementation-level security - Buffer overflows - Input checking - Injection attacks 8. Testing - overview - model-based testing - testing security properties 9. Risk analysis and management 1 (project management) - "risk": assets, threats, vulnerabilities, risk - risk assessment: quantitative and qualitative - safeguards - generic risk analysis procedure - The OCTAVE approach 10. Risk analysis: IT baseline protection - Overview - Example 11. Evaluation criteria - CMMI - systems security engineering CMM - common criteria 12. Guest lecture - TBA | |||||

Literatur | - Ross Anderson: Security Engineering, Wiley, 2001. - Matt Bishop: Computer Security, Pearson Education, 2003. - Ian Sommerville: Software Engineering, 6th ed., Addison-Wesley, 2001. - John Viega, Gary McGraw: Building Secure Software, Addison-Wesley, 2002. - Further relevant books and journal/conference articles will be announced in the lecture. | |||||

Voraussetzungen / Besonderes | Prerequisite: Class on Information Security | |||||

252-1411-00L | Security of Wireless Networks | W | 6 KP | 2V + 1U + 2A | S. Capkun, K. Kostiainen | |

Kurzbeschreibung | Core Elements: Wireless communication channel, Wireless network architectures and protocols, Attacks on wireless networks, Protection techniques. | |||||

Lernziel | After this course, the students should be able to: describe and classify security goals and attacks in wireless networks; describe security architectures of the following wireless systems and networks: 802.11, GSM/UMTS, RFID, ad hoc/sensor networks; reason about security protocols for wireless network; implement mechanisms to secure 802.11 networks. | |||||

Inhalt | Wireless channel basics. Wireless electronic warfare: jamming and target tracking. Basic security protocols in cellular, WLAN and multi-hop networks. Recent advances in security of multi-hop networks; RFID privacy challenges and solutions. | |||||

252-1414-00L | System Security | W | 7 KP | 2V + 2U + 2A | S. Capkun, A. Perrig | |

Kurzbeschreibung | The first part of the lecture covers individual system aspects starting with tamperproof or tamper-resistant hardware in general over operating system related security mechanisms to application software systems, such as host based intrusion detection systems. In the second part, the focus is on system design and methodologies for building secure systems. | |||||

Lernziel | In this lecture, students learn about the security requirements and capabilities that are expected from modern hardware, operating systems, and other software environments. An overview of available technologies, algorithms and standards is given, with which these requirements can be met. | |||||

Inhalt | The first part of the lecture covers individual system's aspects starting with tamperproof or tamperresistant hardware in general over operating system related security mechanisms to application software systems such as host based intrusion detetction systems. The main topics covered are: tamper resistant hardware, CPU support for security, protection mechanisms in the kernel, file system security (permissions / ACLs / network filesystem issues), IPC Security, mechanisms in more modern OS, such as Capabilities and Zones, Libraries and Software tools for security assurance, etc. In the second part, the focus is on system design and methodologies for building secure systems. Topics include: patch management, common software faults (buffer overflows, etc.), writing secure software (design, architecture, QA, testing), compiler-supported security, language-supported security, logging and auditing (BSM audit, dtrace, ...), cryptographic support, and trustworthy computing (TCG, SGX). Along the lectures, model cases will be elaborated and evaluated in the exercises. | |||||

263-4640-00L | Network Security | W | 8 KP | 2V + 2U + 3A | A. Perrig, S. Frei, M. Legner | |

Kurzbeschreibung | Some of today's most damaging attacks on computer systems involve exploitation of network infrastructure, either as the target of attack or as a vehicle to attack end systems. This course provides an in-depth study of network attack techniques and methods to defend against them. | |||||

Lernziel | - Students are familiar with fundamental network security concepts. - Students can assess current threats that Internet services and networked devices face, and can evaluate appropriate countermeasures. - Students can identify and assess known vulnerabilities in a software system that is connected to the Internet (through analysis and penetration testing tools). - Students have an in-depth understanding of a range of important security technologies. - Students learn how formal analysis techniques can help in the design of secure networked systems. | |||||

Inhalt | The course will cover topics spanning five broad themes: (1) network defense mechanisms such as secure routing protocols, TLS, anonymous communication systems, network intrusion detection systems, and public-key infrastructures; (2) network attacks such as denial of service (DoS) and distributed denial-of-service (DDoS) attacks; (3) analysis and inference topics such as network forensics and attack economics; (4) formal analysis techniques for verifying the security properties of network architectures; and (5) new technologies related to next-generation networks. | |||||

Voraussetzungen / Besonderes | This lecture is intended for students with an interest in securing Internet communication services and network devices. Students are assumed to have knowledge in networking as taught in a Communication Networks lecture. The course will involve a course project and some smaller programming projects as part of the homework. Students are expected to have basic knowledge in network programming in a programming language such as C/C++, Go, or Python. | |||||

Ergänzung in Machine Learning | ||||||

Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |

252-0535-00L | Advanced Machine Learning | W | 10 KP | 3V + 2U + 4A | J. M. Buhmann, C. Cotrini Jimenez | |

Kurzbeschreibung | Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects. | |||||

Lernziel | Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensible to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data. | |||||

Inhalt | The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data. Topics covered in the lecture include: Fundamentals: What is data? Bayesian Learning Computational learning theory Supervised learning: Ensembles: Bagging and Boosting Max Margin methods Neural networks Unsupservised learning: Dimensionality reduction techniques Clustering Mixture Models Non-parametric density estimation Learning Dynamical Systems | |||||

Skript | No lecture notes, but slides will be made available on the course webpage. | |||||

Literatur | C. Bishop. Pattern Recognition and Machine Learning. Springer 2007. R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley & Sons, second edition, 2001. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, 2001. L. Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer, 2004. | |||||

Voraussetzungen / Besonderes | The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments. Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution. PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points. | |||||

252-3005-00L | Natural Language Processing Number of participants limited to 200. | W | 5 KP | 2V + 1U + 1A | R. Cotterell | |

Kurzbeschreibung | This course presents topics in natural language processing with an emphasis on modern techniques, primarily focusing on statistical and deep learning approaches. The course provides an overview of the primary areas of research in language processing as well as a detailed exploration of the models and techniques used both in research and in commercial natural language systems. | |||||

Lernziel | The objective of the course is to learn the basic concepts in the statistical processing of natural languages. The course will be project-oriented so that the students can also gain hands-on experience with state-of-the-art tools and techniques. | |||||

Inhalt | This course presents an introduction to general topics and techniques used in natural language processing today, primarily focusing on statistical approaches. The course provides an overview of the primary areas of research in language processing as well as a detailed exploration of the models and techniques used both in research and in commercial natural language systems. | |||||

Literatur | Jacob Eisenstein: Introduction to Natural Language Processing (Adaptive Computation and Machine Learning series) | |||||

263-2400-00L | Reliable and Interpretable Artificial Intelligence | W | 6 KP | 2V + 2U + 1A | M. Vechev | |

Kurzbeschreibung | Creating reliable and explainable probabilistic models is a fundamental challenge to solving the artificial intelligence problem. This course covers some of the latest and most exciting advances that bring us closer to constructing such models. | |||||

Lernziel | The main objective of this course is to expose students to the latest and most exciting research in the area of explainable and interpretable artificial intelligence, a topic of fundamental and increasing importance. Upon completion of the course, the students should have mastered the underlying methods and be able to apply them to a variety of problems. To facilitate deeper understanding, an important part of the course will be a group hands-on programming project where students will build a system based on the learned material. | |||||

Inhalt | The course covers some of the latest research (over the last 2-3 years) underlying the creation of safe, trustworthy, and reliable AI (more information here: Link): * Adversarial Attacks on Deep Learning (noise-based, geometry attacks, sound attacks, physical attacks, autonomous driving, out-of-distribution) * Defenses against attacks * Combining gradient-based optimization with logic for encoding background knowledge * Complete Certification of deep neural networks via automated reasoning (e.g., via numerical abstractions, mixed-integer solvers). * Probabilistic certification of deep neural networks * Training deep neural networks to be provably robust via automated reasoning * Understanding and Interpreting Deep Networks * Probabilistic Programming | |||||

Voraussetzungen / Besonderes | While not a formal requirement, the course assumes familiarity with basics of machine learning (especially probability theory, linear algebra, gradient descent, and neural networks). These topics are usually covered in “Intro to ML” classes at most institutions (e.g., “Introduction to Machine Learning” at ETH). For solving assignments, some programming experience in Python is excepted. | |||||

263-3210-00L | Deep Learning | W | 8 KP | 3V + 2U + 2A | T. Hofmann | |

Kurzbeschreibung | Deep learning is an area within machine learning that deals with algorithms and models that automatically induce multi-level data representations. | |||||

Lernziel | In recent years, deep learning and deep networks have significantly improved the state-of-the-art in many application domains such as computer vision, speech recognition, and natural language processing. This class will cover the mathematical foundations of deep learning and provide insights into model design, training, and validation. The main objective is a profound understanding of why these methods work and how. There will also be a rich set of hands-on tasks and practical projects to familiarize students with this emerging technology. | |||||

Voraussetzungen / Besonderes | This is an advanced level course that requires some basic background in machine learning. More importantly, students are expected to have a very solid mathematical foundation, including linear algebra, multivariate calculus, and probability. The course will make heavy use of mathematics and is not (!) meant to be an extended tutorial of how to train deep networks with tools like Torch or Tensorflow, although that may be a side benefit. The participation in the course is subject to the following condition: - Students must have taken the exam in Advanced Machine Learning (252-0535-00) or have acquired equivalent knowledge, see exhaustive list below: Advanced Machine Learning Link Computational Intelligence Lab Link Introduction to Machine Learning Link Statistical Learning Theory Link Computational Statistics Link Probabilistic Artificial Intelligence Link | |||||

263-5210-00L | Probabilistic Artificial Intelligence | W | 8 KP | 3V + 2U + 2A | A. Krause | |

Kurzbeschreibung | This course introduces core modeling techniques and algorithms from machine learning, optimization and control for reasoning and decision making under uncertainty, and study applications in areas such as robotics and the Internet. | |||||

Lernziel | How can we build systems that perform well in uncertain environments and unforeseen situations? How can we develop systems that exhibit "intelligent" behavior, without prescribing explicit rules? How can we build systems that learn from experience in order to improve their performance? We will study core modeling techniques and algorithms from statistics, optimization, planning, and control and study applications in areas such as sensor networks, robotics, and the Internet. The course is designed for graduate students. | |||||

Inhalt | Topics covered: - Probability - Probabilistic inference (variational inference, MCMC) - Bayesian learning (Gaussian processes, Bayesian deep learning) - Probabilistic planning (MDPs, POMPDPs) - Multi-armed bandits and Bayesian optimization - Reinforcement learning | |||||

Voraussetzungen / Besonderes | Solid basic knowledge in statistics, algorithms and programming. The material covered in the course "Introduction to Machine Learning" is considered as a prerequisite. | |||||

Ergänzung in Networking | ||||||

Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |

252-1411-00L | Security of Wireless Networks | W | 6 KP | 2V + 1U + 2A | S. Capkun, K. Kostiainen | |

Kurzbeschreibung | Core Elements: Wireless communication channel, Wireless network architectures and protocols, Attacks on wireless networks, Protection techniques. | |||||

Lernziel | After this course, the students should be able to: describe and classify security goals and attacks in wireless networks; describe security architectures of the following wireless systems and networks: 802.11, GSM/UMTS, RFID, ad hoc/sensor networks; reason about security protocols for wireless network; implement mechanisms to secure 802.11 networks. | |||||

Inhalt | Wireless channel basics. Wireless electronic warfare: jamming and target tracking. Basic security protocols in cellular, WLAN and multi-hop networks. Recent advances in security of multi-hop networks; RFID privacy challenges and solutions. | |||||

263-4640-00L | Network Security | W | 8 KP | 2V + 2U + 3A | A. Perrig, S. Frei, M. Legner | |

Kurzbeschreibung | Some of today's most damaging attacks on computer systems involve exploitation of network infrastructure, either as the target of attack or as a vehicle to attack end systems. This course provides an in-depth study of network attack techniques and methods to defend against them. | |||||

Lernziel | - Students are familiar with fundamental network security concepts. - Students can assess current threats that Internet services and networked devices face, and can evaluate appropriate countermeasures. - Students can identify and assess known vulnerabilities in a software system that is connected to the Internet (through analysis and penetration testing tools). - Students have an in-depth understanding of a range of important security technologies. - Students learn how formal analysis techniques can help in the design of secure networked systems. | |||||

Inhalt | The course will cover topics spanning five broad themes: (1) network defense mechanisms such as secure routing protocols, TLS, anonymous communication systems, network intrusion detection systems, and public-key infrastructures; (2) network attacks such as denial of service (DoS) and distributed denial-of-service (DDoS) attacks; (3) analysis and inference topics such as network forensics and attack economics; (4) formal analysis techniques for verifying the security properties of network architectures; and (5) new technologies related to next-generation networks. | |||||

Voraussetzungen / Besonderes | This lecture is intended for students with an interest in securing Internet communication services and network devices. Students are assumed to have knowledge in networking as taught in a Communication Networks lecture. The course will involve a course project and some smaller programming projects as part of the homework. Students are expected to have basic knowledge in network programming in a programming language such as C/C++, Go, or Python. |

- Seite 1 von 2 Alle