# Search result: Catalogue data in Autumn Semester 2020

Mathematics Master | ||||||

Core Courses For the Master's degree in Applied Mathematics the following additional condition (not manifest in myStudies) must be obeyed: At least 15 of the required 28 credits from core courses and electives must be acquired in areas of applied mathematics and further application-oriented fields. | ||||||

Bachelor Core Courses: Pure Mathematics Further restrictions apply, but in particular: 401-3531-00L Differential Geometry I can only be recognised for the Master Programme if 401-3532-00L Differential Geometry II has not been recognised for the Bachelor Programme. Analogously for: 401-3461-00L Functional Analysis I - 401-3462-00L Functional Analysis II 401-3001-61L Algebraic Topology I - 401-3002-12L Algebraic Topology II 401-3132-00L Commutative Algebra - 401-3146-12L Algebraic Geometry For the category assignment take contact with the Study Administration Office (Link) after having received the credits. | ||||||

Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|

401-3461-00L | Functional Analysis I At most one of the three course units (Bachelor Core Courses) 401-3461-00L Functional Analysis I 401-3531-00L Differential Geometry I 401-3601-00L Probability Theory can be recognised for the Master's degree in Mathematics or Applied Mathematics. In this case, you cannot change the category assignment by yourself in myStudies but must take contact with the Study Administration Office (Link) after having received the credits. | E- | 10 credits | 4V + 1U | A. Carlotto | |

Abstract | Baire category; Banach and Hilbert spaces, bounded linear operators; basic principles: Uniform boundedness, open mapping/closed graph theorem, Hahn-Banach; convexity; dual spaces; weak and weak* topologies; Banach-Alaoglu; reflexive spaces; compact operators and Fredholm theory; closed range theorem; spectral theory of self-adjoint operators in Hilbert spaces. | |||||

Objective | Acquire a good degree of fluency with the fundamental concepts and tools belonging to the realm of linear Functional Analysis, with special emphasis on the geometric structure of Banach and Hilbert spaces, and on the basic properties of linear maps. | |||||

Literature | Recommended references include the following: Michael Struwe: "Funktionalanalysis I" (Skript available at Link) Haim Brezis: "Functional analysis, Sobolev spaces and partial differential equations". Springer, 2011. Peter D. Lax: "Functional analysis". Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York, 2002. Elias M. Stein and Rami Shakarchi: "Functional analysis" (volume 4 of Princeton Lectures in Analysis). Princeton University Press, Princeton, NJ, 2011. Manfred Einsiedler and Thomas Ward: "Functional Analysis, Spectral Theory, and Applications", Graduate Text in Mathematics 276. Springer, 2017. Walter Rudin: "Functional analysis". International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, second edition, 1991. | |||||

Prerequisites / Notice | Solid background on the content of all Mathematics courses of the first two years of the undergraduate curriculum at ETH (most remarkably: fluency with topology and measure theory, in part. Lebesgue integration and L^p spaces). | |||||

401-3531-00L | Differential Geometry IAt most one of the three course units (Bachelor Core Courses) 401-3461-00L Functional Analysis I 401-3531-00L Differential Geometry I 401-3601-00L Probability Theory can be recognised for the Master's degree in Mathematics or Applied Mathematics. In this case, you cannot change the category assignment by yourself in myStudies but must take contact with the Study Administration Office (Link) after having received the credits. | E- | 10 credits | 4V + 1U | W. Merry | |

Abstract | This will be an introductory course in differential geometry. Topics covered include: - Smooth manifolds, submanifolds, vector fields, - Lie groups, homogeneous spaces, - Vector bundles, tensor fields, differential forms, - Integration on manifolds and the de Rham theorem, - Principal bundles. | |||||

Objective | ||||||

Literature | There are many excellent textbooks on differential geometry. A friendly and readable book that covers everything in Differential Geometry I is: John M. Lee "Introduction to Smooth Manifolds" 2nd ed. (2012) Springer-Verlag. A more advanced (and far less friendly) series of books that covers everything in both Differential Geometry I and II is: S. Kobayashi, K. Nomizu "Foundations of Differential Geometry" Volumes I and II (1963, 1969) Wiley. |

- Page 1 of 1