Search result: Catalogue data in Autumn Semester 2020

Statistics Master Information
The following courses belong to the curriculum of the Master's Programme in Statistics. The corresponding credits do not count as external credits even for course units where an enrolment at ETH Zurich is not possible.
Master Studies (Programme Regulations 2014)
Core Courses
In each subject area, the core courses offered are normally mathematical as well as application-oriented in content. For each subject area, only one of these is recognised for the Master degree.
Regression
NumberTitleTypeECTSHoursLecturers
401-0649-00LApplied Statistical RegressionW5 credits2V + 1UM. Dettling
AbstractThis course offers a practically oriented introduction into regression modeling methods. The basic concepts and some mathematical background are included, with the emphasis lying in learning "good practice" that can be applied in every student's own projects and daily work life. A special focus will be laid in the use of the statistical software package R for regression analysis.
ObjectiveThe students acquire advanced practical skills in linear regression analysis and are also familiar with its extensions to generalized linear modeling.
ContentThe course starts with the basics of linear modeling, and then proceeds to parameter estimation, tests, confidence intervals, residual analysis, model choice, and prediction. More rarely touched but practically relevant topics that will be covered include variable transformations, multicollinearity problems and model interpretation, as well as general modeling strategies.

The last third of the course is dedicated to an introduction to generalized linear models: this includes the generalized additive model, logistic regression for binary response variables, binomial regression for grouped data and poisson regression for count data.
Lecture notesA script will be available.
LiteratureFaraway (2005): Linear Models with R
Faraway (2006): Extending the Linear Model with R
Draper & Smith (1998): Applied Regression Analysis
Fox (2008): Applied Regression Analysis and GLMs
Montgomery et al. (2006): Introduction to Linear Regression Analysis
Prerequisites / NoticeThe exercises, but also the classes will be based on procedures from the freely available, open-source statistical software package R, for which an introduction will be held.

In the Mathematics Bachelor and Master programmes, the two course units 401-0649-00L "Applied Statistical Regression" and 401-3622-00L "Statistical Modelling" are mutually exclusive. Registration for the examination of one of these two course units is only allowed if you have not registered for the examination of the other course unit.
401-3622-00LStatistical Modelling Information W8 credits4GP. L. Bühlmann, M. Mächler
AbstractIn regression, the dependency of a random response variable on other variables is examined. We consider the theory of linear regression with one or more covariates, high-dimensional linear models, nonlinear models and generalized linear models, robust methods, model choice and nonparametric models. Several numerical examples will illustrate the theory.
ObjectiveIntroduction into theory and practice of a broad and popular area of statistics, from a modern viewpoint.
ContentIn der Regression wird die Abhängigkeit einer beobachteten quantitativen Grösse von einer oder mehreren anderen (unter Berücksichtigung zufälliger Fehler) untersucht. Themen der Vorlesung sind: Einfache und multiple Regression, Theorie allgemeiner linearer Modelle, Hoch-dimensionale Modelle, Ausblick auf nichtlineare Modelle. Querverbindungen zur Varianzanalyse, Modellsuche, Residuenanalyse; Einblicke in Robuste Regression. Durchrechnung und Diskussion von Anwendungsbeispielen.
Lecture notesLecture notes
Prerequisites / NoticeThis is the course unit with former course title "Regression".
Credits cannot be recognised for both courses 401-3622-00L Statistical Modelling and 401-0649-00L Applied Statistical Regression in the Mathematics Bachelor and Master programmes (to be precise: one course in the Bachelor and the other course in the Master is also forbidden).
Analysis of Variance and Design of Experiments
NumberTitleTypeECTSHoursLecturers
401-0625-01LApplied Analysis of Variance and Experimental DesignW5 credits2V + 1UL. Meier
AbstractPrinciples of experimental design, one-way analysis of variance, contrasts and multiple comparisons, multi-factor designs and analysis of variance, complete block designs, Latin square designs, random effects and mixed effects models, split-plot designs, incomplete block designs, two-series factorials and fractional designs, power.
ObjectiveParticipants will be able to plan and analyze efficient experiments in the fields of natural sciences. They will gain practical experience by using the software R.
ContentPrinciples of experimental design, one-way analysis of variance, contrasts and multiple comparisons, multi-factor designs and analysis of variance, complete block designs, Latin square designs, random effects and mixed effects models, split-plot designs, incomplete block designs, two-series factorials and fractional designs, power.
LiteratureG. Oehlert: A First Course in Design and Analysis of Experiments, W.H. Freeman and Company, New York, 2000.
Prerequisites / NoticeThe exercises, but also the classes will be based on procedures from the freely available, open-source statistical software R, for which an introduction will be held.
Multivariate Statistics
No course offerings in this semester.
Time Series and Stochastic Processes
NumberTitleTypeECTSHoursLecturers
401-4623-00LTime Series AnalysisW6 credits3GF. Balabdaoui
AbstractThe course offers an introduction into analyzing times series, that is observations which occur in time. The material will cover Stationary Models, ARMA processes, Spectral Analysis, Forecasting, Nonstationary Models, ARIMA Models and an introduction to GARCH models.
ObjectiveThe goal of the course is to have a a good overview of the different types of time series and the approaches used in their statistical analysis.
ContentThis course treats modeling and analysis of time series, that is random variables which change in time. As opposed to the i.i.d. framework, the main feature exibited by time series is the dependence between successive observations.

The key topics which will be covered as:

Stationarity
Autocorrelation
Trend estimation
Elimination of seasonality
Spectral analysis, spectral densities
Forecasting
ARMA, ARIMA, Introduction into GARCH models
LiteratureThe main reference for this course is the book "Introduction to Time Series and Forecasting", by P. J. Brockwell and R. A. Davis
Prerequisites / NoticeBasic knowledge in probability and statistics
Mathematical Statistics
NumberTitleTypeECTSHoursLecturers
401-3621-00LFundamentals of Mathematical Statistics Information W10 credits4V + 1US. van de Geer
AbstractThe course covers the basics of inferential statistics.
Objective
401-8623-00LLikelihood Inference (University of Zurich)
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH.
UZH Module Code: STA402

Mind the enrolment deadlines at UZH:
Link

The two core courses Fundamentals of Mathematical Statistics (401-3621-00L) and Likelihood Inference (401-8623-00L) are similar in content. Therefore only one of them can be recognised towards the Master’s degree in Statistics (Programme Regulations 2020) in the core course area «Mathematical Statistics».
W5 credits3GUniversity lecturers
AbstractOverview over the basics of likelihood inference.
Objective
  •  Page  1  of  1