Search result: Catalogue data in Autumn Semester 2020

Mathematics Master Information
Application Area
Only necessary and eligible for the Master degree in Applied Mathematics.
One of the application areas specified must be selected for the category Application Area for the Master degree in Applied Mathematics. At least 8 credits are required in the chosen application area.
Atmospherical Physics
NumberTitleTypeECTSHoursLecturers
701-1221-00LDynamics of Large-Scale Atmospheric Flow Information W4 credits2V + 1UH. Wernli, L. Papritz
AbstractThis lecture course is about the fundamental aspects of the dynamics of extratropical weather systems (quasi-geostropic dynamics, potential vorticity, Rossby waves, baroclinic instability). The fundamental concepts are formally introduced, quantitatively applied and illustrated with examples from the real atmosphere. Exercises (quantitative and qualitative) form an essential part of the course.
ObjectiveUnderstanding the dynamics of large-scale atmospheric flow
ContentDynamical Meteorology is concerned with the dynamical processes of the
earth's atmosphere. The fundamental equations of motion in the atmosphere will be discussed along with the dynamics and interactions of synoptic system - i.e. the low and high pressure systems that determine our weather. The motion of such systems can be understood in terms of quasi-geostrophic theory. The lecture course provides a derivation of the mathematical basis along with some interpretations and applications of the concept.
Lecture notesDynamics of large-scale atmospheric flow
Literature- Holton J.R., An introduction to Dynamic Meteorogy. Academic Press, fourth edition 2004,
- Pichler H., Dynamik der Atmosphäre, Bibliographisches Institut, 456 pp. 1997
Prerequisites / NoticePhysics I, II, Environmental Fluid Dynamics
Biology
NumberTitleTypeECTSHoursLecturers
551-0015-00LBiology IW2 credits2VE. Hafen, E. Dufresne
AbstractThe lecture Biology I, together with the lecture Biology II in the following summer semester, is a basic, introductory course into Biology for Students of Materials Sciences and other students with biology as subsidiary subject.
ObjectiveThe goal of this course is to give the students a basic understanding of the molecules that build a cell and make it function, and the basic principles of metabolism and molecular genetics.
ContentDie folgenden Kapitelnummern beziehen sich auf das der Vorlesung zugrundeliegende Lehrbuch "Biology" (Campbell & Rees, 10th edition, 2015)
Kapitel 1-4 des Lehrbuchs werden als Grundwissen vorausgesetzt

1. Aufbau der Zelle

Kapitel 5: Struktur und Funktion biologischer Makromoleküle
Kapitel 6: Eine Tour durch die Zelle
Kaptiel 7: Membranstruktur und-funktion
Kapitel 8: Einführung in den Stoffwechsel
Kapitel 9: Zelluläre Atmung und Speicherung chemischer Energie
Kapitel 10: Photosynthese
Kapitel 12: Der Zellzyklus
Kapitel 17: Vom Gen zum Protein

2. Allgemeine Genetik

Kapitel 13: Meiose und Reproduktionszyklen
Kapitel 14: Mendel'sche Genetik
Kapitel 15: Die chromosomale Basis der Vererbung
Kapitel 16: Die molekulare Grundlage der Vererbung
Kapitel 18: Genetik von Bakterien und Viren
Kapitel 46: Tierische Reproduktion

Grundlagen des Stoffwechsels und eines Überblicks über molekulare Genetik
Lecture notesDer Vorlesungsstoff ist sehr nahe am Lehrbuch gehalten, Skripte werden ggf. durch die Dozenten zur Verfügung gestellt.
LiteratureDas folgende Lehrbuch ist Grundlage für die Vorlesungen Biologie I und II:

„Biology“, Campbell and Rees, 10th Edition, 2015, Pearson/Benjamin Cummings, ISBN 978-3-8632-6725-4
Prerequisites / NoticeZur Vorlesung Biologie I gibt es während der Prüfungssessionen eine einstündige, schriftliche Prüfung. Die Vorlesung Biologie II wird separat geprüft.
636-0017-00LComputational BiologyW6 credits3G + 2AT. Stadler, T. Vaughan
AbstractThe aim of the course is to provide up-to-date knowledge on how we can study biological processes using genetic sequencing data. Computational algorithms extracting biological information from genetic sequence data are discussed, and statistical tools to understand this information in detail are introduced.
ObjectiveAttendees will learn which information is contained in genetic sequencing data and how to extract information from this data using computational tools. The main concepts introduced are:
* stochastic models in molecular evolution
* phylogenetic & phylodynamic inference
* maximum likelihood and Bayesian statistics
Attendees will apply these concepts to a number of applications yielding biological insight into:
* epidemiology
* pathogen evolution
* macroevolution of species
ContentThe course consists of four parts. We first introduce modern genetic sequencing technology, and algorithms to obtain sequence alignments from the output of the sequencers. We then present methods for direct alignment analysis using approaches such as BLAST and GWAS. Second, we introduce mechanisms and concepts of molecular evolution, i.e. we discuss how genetic sequences change over time. Third, we employ evolutionary concepts to infer ancestral relationships between organisms based on their genetic sequences, i.e. we discuss methods to infer genealogies and phylogenies. Lastly, we introduce the field of phylodynamics, the aim of which is to understand and quantify population dynamic processes (such as transmission in epidemiology or speciation & extinction in macroevolution) based on a phylogeny. Throughout the class, the models and methods are illustrated on different datasets giving insight into the epidemiology and evolution of a range of infectious diseases (e.g. HIV, HCV, influenza, Ebola). Applications of the methods to the field of macroevolution provide insight into the evolution and ecology of different species clades. Students will be trained in the algorithms and their application both on paper and in silico as part of the exercises.
Lecture notesLecture slides will be available on moodle.
LiteratureThe course is not based on any of the textbooks below, but they are excellent choices as accompanying material:
* Yang, Z. 2006. Computational Molecular Evolution.
* Felsenstein, J. 2004. Inferring Phylogenies.
* Semple, C. & Steel, M. 2003. Phylogenetics.
* Drummond, A. & Bouckaert, R. 2015. Bayesian evolutionary analysis with BEAST.
Prerequisites / NoticeBasic knowledge in linear algebra, analysis, and statistics will be helpful. Programming in R will be required for the project work (compulsory continuous performance assessments). We provide an R tutorial and help sessions during the first two weeks of class to learn the required skills. However, in case you do not have any previous experience with R, we strongly recommend to get familiar with R prior to the semester start. For the D-BSSE students, we highly recommend the voluntary course „Introduction to Programming“, which takes place at D-BSSE from Wednesday, September 12 to Friday, September 14, i.e. BEFORE the official semester starting date Link
For the Zurich-based students without R experience, we recommend the R course Link, or working through the script provided as part of this R course.
636-0007-00LComputational Systems Biology Information W6 credits3V + 2UJ. Stelling
AbstractStudy of fundamental concepts, models and computational methods for the analysis of complex biological networks. Topics: Systems approaches in biology, biology and reaction network fundamentals, modeling and simulation approaches (topological, probabilistic, stoichiometric, qualitative, linear / nonlinear ODEs, stochastic), and systems analysis (complexity reduction, stability, identification).
ObjectiveThe aim of this course is to provide an introductory overview of mathematical and computational methods for the modeling, simulation and analysis of biological networks.
ContentBiology has witnessed an unprecedented increase in experimental data and, correspondingly, an increased need for computational methods to analyze this data. The explosion of sequenced genomes, and subsequently, of bioinformatics methods for the storage, analysis and comparison of genetic sequences provides a prominent example. Recently, however, an additional area of research, captured by the label "Systems Biology", focuses on how networks, which are more than the mere sum of their parts' properties, establish biological functions. This is essentially a task of reverse engineering. The aim of this course is to provide an introductory overview of corresponding computational methods for the modeling, simulation and analysis of biological networks. We will start with an introduction into the basic units, functions and design principles that are relevant for biology at the level of individual cells. Making extensive use of example systems, the course will then focus on methods and algorithms that allow for the investigation of biological networks with increasing detail. These include (i) graph theoretical approaches for revealing large-scale network organization, (ii) probabilistic (Bayesian) network representations, (iii) structural network analysis based on reaction stoichiometries, (iv) qualitative methods for dynamic modeling and simulation (Boolean and piece-wise linear approaches), (v) mechanistic modeling using ordinary differential equations (ODEs) and finally (vi) stochastic simulation methods.
Lecture notesLink
LiteratureU. Alon, An introduction to systems biology. Chapman & Hall / CRC, 2006.

Z. Szallasi et al. (eds.), System modeling in cellular biology. MIT Press, 2010.

B. Ingalls, Mathematical modeling in systems biology: an introduction. MIT Press, 2013
636-0009-00LEvolutionary DynamicsW6 credits2V + 1U + 2AN. Beerenwinkel
AbstractEvolutionary dynamics is concerned with the mathematical principles according to which life has evolved. This course offers an introduction to mathematical modeling of evolution, including deterministic and stochastic models.
ObjectiveThe goal of this course is to understand and to appreciate mathematical models and computational methods that provide insight into the evolutionary process.
ContentEvolution is the one theory that encompasses all of biology. It provides a single, unifying concept to understand the living systems that we observe today. We will introduce several types of mathematical models of evolution to describe gene frequency changes over time in the context of different biological systems, focusing on asexual populations. Viruses and cancer cells provide the most prominent examples of such systems and they are at the same time of great biomedical interest. The course will cover some classical mathematical population genetics and population dynamics, and also introduce several new approaches. This is reflected in a diverse set of mathematical concepts which make their appearance throughout the course, all of which are introduced from scratch. Topics covered include the quasispecies equation, evolution of HIV, evolutionary game theory, birth-death processes, evolutionary stability, evolutionary graph theory, somatic evolution of cancer, stochastic tunneling, cell differentiation, hematopoietic tumor stem cells, genetic progression of cancer and the speed of adaptation, diffusion theory, fitness landscapes, neutral networks, branching processes, evolutionary escape, and epistasis.
Lecture notesNo.
Literature- Evolutionary Dynamics. Martin A. Nowak. The Belknap Press of Harvard University Press, 2006.
- Evolutionary Theory: Mathematical and Conceptual Foundations. Sean H. Rice. Sinauer Associates, Inc., 2004.
Prerequisites / NoticePrerequisites: Basic mathematics (linear algebra, calculus, probability)
Control and Automation
NumberTitleTypeECTSHoursLecturers
151-0563-01LDynamic Programming and Optimal Control Information W4 credits2V + 1UR. D'Andrea
AbstractIntroduction to Dynamic Programming and Optimal Control.
ObjectiveCovers the fundamental concepts of Dynamic Programming & Optimal Control.
ContentDynamic Programming Algorithm; Deterministic Systems and Shortest Path Problems; Infinite Horizon Problems, Bellman Equation; Deterministic Continuous-Time Optimal Control.
LiteratureDynamic Programming and Optimal Control by Dimitri P. Bertsekas, Vol. I, 3rd edition, 2005, 558 pages, hardcover.
Prerequisites / NoticeRequirements: Knowledge of advanced calculus, introductory probability theory, and matrix-vector algebra.
Economics
NumberTitleTypeECTSHoursLecturers
401-3929-00LFinancial Risk Management in Social and Pension Insurance Information W4 credits2VP. Blum
AbstractInvestment returns are an important source of funding for social and pension insurance, and financial risk is an important threat to stability. We study short-term and long-term financial risk and its interplay with other risk factors, and we develop methods for the measurement and management of financial risk and return in an asset/liability context with the goal of assuring sustainable funding.
ObjectiveUnderstand the basic asset-liability framework: essential principles and properties of social and pension insurance; cash flow matching, duration matching, valuation portfolio and loose coupling; the notion of financial risk; long-term vs. short-term risk; coherent measures of risk.

Understand the conditions for sustainable funding: derivation of required returns; interplay between return levels, contribution levels and other parameters; influence of guaranteed benefits.

Understand the notion of risk-taking capability: capital process as a random walk; measures of long-term risk and relation to capital; short-term solvency vs. long-term stability; effect of embedded options and guarantees; interplay between required return and risk-taking capability.

Be able to study empirical properties of financial assets: the Normal hypothesis and the deviations from it; statistical tools for investigating relevant risk and return properties of financial assets; time aggregation properties; be able to conduct analysis of real data for the most important asset classes.

Understand and be able to carry out portfolio construction: the concept of diversification; limitations to diversification; correlation breakdown; incorporation of constraints; sensitivities and shortcomings of optimized portfolios.

Understand and interpret the asset-liability interplay: the optimized portfolio in the asset-liability framework; short-term risk vs. long-term risk; the influence of constraints; feasible and non-feasible solutions; practical considerations.

Understand and be able to address essential problems in asset / liability management, e.g. optimal risk / return positioning, optimal discount rate, target value for funding ratio or turnaround issues.

Have an overall view: see the big picture of what asset returns can and cannot contribute to social security; be aware of the most relevant outcomes; know the role of the actuary in the financial risk management process.
ContentFor pension insurance and other forms of social insurance, investment returns are an important source of funding. In order to earn these returns, substantial financial risks must be taken, and these risks represent an important threat to financial stability, in the long term and in the short term.

Risk and return of financial assets cannot be separated from one another and, hence, asset management and risk management cannot be separated either. Managing financial risk in social and pension insurance is, therefore, the task of reconciling the contradictory dimensions of

1. Required return for a sustainable funding of the institution,
2. Risk-taking capability of the institution,
3. Returns available from financial assets in the market,
4. Risks incurred by investing in these assets.

This task must be accomplished under a number of constraints. Financial risk management in social insurance also means reconciling the long time horizon of the promised insurance benefits with the short time horizon of financial markets and financial risk.

It is not the goal of this lecture to provide the students with any cookbook recipes that can readily be applied without further reflection. The goal is rather to enable the students to develop their own understanding of the problems and possible solutions associated with the management of financial risks in social and pension insurance.

To this end, a rigorous intellectual framework will be developed and a powerful set of mathematical tools from the fields of actuarial mathematics and quantitative risk management will be applied. When analyzing the properties of financial assets, an empirical viewpoint will be taken using statistical tools and considering real-world data.
Lecture notesExtensive handouts will be provided. Moreover, practical examples and data sets in Excel and R will be made available.
Prerequisites / NoticeSolid base knowledge of probability and statistics is indispensable. Specialized concepts from financial and insurance mathematics as well as quantitative risk management will be introduced in the lecture as needed, but some prior knowledge in some of these areas would be an advantage.

This course counts towards the diploma of "Aktuar SAV".

The exams ONLY take place during the official ETH examination period.
363-0537-00LResource and Environmental EconomicsW3 credits2GL. Bretschger
AbstractRelationship between economy and environment, market failures, external effects and public goods, contingent valuation, internalisation of externalities, economics of non-renewable resources, economics of renewable resources, environmental cost-benefit analysis, sustainability economics, and international resource and environmental problems.
ObjectiveA successful completion of the course will enable a thorough understanding of the basic questions and methods of resource and environmental economics and the ability to solve typical problems using appropriate tools consisting of concise verbal explanations, diagrams or mathematical expressions. Concrete goals are first of all the acquisition of knowledge about the main questions of resource and environmental economics and about the foundation of the theory with different normative concepts in terms of efficiency and fairness. Secondly, students should be able to deal with environmental externalities and internalisation through appropriate policies or private negotiations, including knowledge of the available policy instruments and their relative strengths and weaknesses. Thirdly, the course will allow for in-depth economic analysis of renewable and non-renewable resources, including the role of stock constraints, regeneration functions, market power, property rights and the impact of technology. A fourth objective is to successfully use the well-known tool of cost-benefit analysis for environmental policy problems, which requires knowledge of the benefits of an improved natural environment. The last two objectives of the course are the acquisition of sufficient knowledge about the economics of sustainability and the application of environmental economic theory and policy at international level, e.g. to the problem of climate change.
ContentThe course covers all the interactions between the economy and the natural environment. It introduces and explains basic welfare concepts and market failure; external effects, public goods, and environmental policy; the measurement of externalities and contingent valuation; the economics of non-renewable resources, renewable resources, cost-benefit-analysis, sustainability concepts; international aspects of resource and environmental problems; selected examples and case studies. After a general introduction to resource and environmental economics, highlighting its importace and the main issues, the course explains the normative basis, utilitarianism, and fairness according to different principles. Pollution externalities are a deep core topic of the lecture. We explain the governmental internalisation of externalities as well as the private internalisation of externalities (Coase theorem). Furthermore, the issues of free rider problems and public goods, efficient levels of pollution, tax vs. permits, and command and control instruments add to a thorough analysis of environmental policy. Turning to resource supply, the lecture first looks at empirical data on non-renewable natural resources and then develops the optimal price development (Hotelling-rule). It deals with the effects of explorations, new technologies, and market power. When treating the renewable resources, we look at biological growth functions, optimal harvesting of renewable resources, and the overuse of open-access resources. A next topic is cost-benefit analysis with the environment, requiring measuring environmental benefits and measuring costs. In the chapter on sustainability, the course covers concepts of sustainability, conflicts with optimality, and indicators of sustainability. In a final chapter, we consider international environmental problems and in particular climate change and climate policy.
LiteraturePerman, R., Ma, Y., McGilvray, J, Common, M.: "Natural Resource & Environmental Economics", 4th edition, 2011, Harlow, UK: Pearson Education
363-0503-00LPrinciples of Microeconomics
GESS (Science in Perspective): This lecture is for MSc students only. BSc students register for 363-1109-00L Einführung in die Mikroökonomie.
W3 credits2GM. Filippini
AbstractThe course introduces basic principles, problems and approaches of microeconomics. This provides the students with reflective and contextual knowledge on how societies use scarce resources to produce goods and services and ensure a (fair) distribution.
ObjectiveThe learning objectives of the course are:

(1) Students must be able to discuss basic principles, problems and approaches in microeconomics. (2) Students can analyse and explain simple economic principles in a market using supply and demand graphs. (3) Students can contrast different market structures and describe firm and consumer behaviour. (4) Students can identify market failures such as externalities related to market activities and illustrate how these affect the economy as a whole. (5) Students can also recognize behavioural failures within a market and discuss basic concepts related to behavioural economics. (6) Students can apply simple mathematical concepts on economic problems.
ContentThe resources on our planet are finite. The discipline of microeconomics therefore deals with the question of how society can use scarce resources to produce goods and services and ensure a (fair) distribution. In particular, microeconomics deals with the behaviour of consumers and firms in different market forms. Economic considerations and discussions are not part of classical engineering and science study programme. Thus, the goal of the lecture "Principles of Microeconomics" is to teach students how economic thinking and argumentation works. The course should help the students to look at the contents of their own studies from a different perspective and to be able to critically reflect on economic problems discussed in the society.

Topics covered by the course are:

- Supply and demand
- Consumer demand: neoclassical and behavioural perspective
- Cost of production: neoclassical and behavioural perspective
- Welfare economics, deadweight losses
- Governmental policies
- Market failures, common resources and public goods
- Public sector, tax system
- Market forms (competitive, monopolistic, monopolistic competitive, oligopolistic)
- International trade
Lecture notesLecture notes, exercises and reference material can be downloaded from Moodle.
LiteratureN. Gregory Mankiw and Mark P. Taylor (2020), "Economics", 5th edition, South-Western Cengage Learning.
The book can also be used for the course 'Principles of Macroeconomics' (Sturm)

For students taking only the course 'Principles of Microeconomics' there is a shorter version of the same book:
N. Gregory Mankiw and Mark P. Taylor (2020), "Microeconomics", 5th edition, South-Western Cengage Learning.

Complementary:
R. Pindyck and D. Rubinfeld (2018), "Microeconomics", 9th edition, Pearson Education.
Prerequisites / NoticeGESS (Science in Perspective): This lecture is for MSc students only. BSc students register for 363-1109-00L Einführung in die Mikroökonomie.
363-0565-00LPrinciples of MacroeconomicsW3 credits2VJ.‑E. Sturm
AbstractThis course examines the behaviour of macroeconomic variables, such as gross domestic product, unemployment and inflation rates. It tries to answer questions like: How can we explain fluctuations of national economic activity? What can economic policy do against unemployment and inflation?
ObjectiveThis lecture will introduce the fundamentals of macroeconomic theory and explain their relevance to every-day economic problems.
ContentThis course helps you understand the world in which you live. There are many questions about the macroeconomy that might spark your curiosity. Why are living standards so meagre in many African countries? Why do some countries have high rates of inflation while others have stable prices? Why have some European countries adopted a common currency? These are just a few of the questions that this course will help you answer.
Furthermore, this course will give you a better understanding of the potential and limits of economic policy. As a voter, you help choose the policies that guide the allocation of society's resources. When deciding which policies to support, you may find yourself asking various questions about economics. What are the burdens associated with alternative forms of taxation? What are the effects of free trade with other countries? How does the government budget deficit affect the economy? These and similar questions are always on the minds of policy makers.
Lecture notesThe course webpage (to be found at Link) contains announcements, course information and lecture slides.
LiteratureThe set-up of the course will closely follow the book of
N. Gregory Mankiw and Mark P. Taylor (2020), Economics, Cengage Learning, Fifth Edition.

Besides this textbook, the slides, lecture notes and problem sets will cover the content of the lecture and the exam questions.
363-1021-00LMonetary PolicyW3 credits2VJ.‑E. Sturm, A. Rathke
AbstractThe main aim of this course is to analyse the goals of monetary policy and to review the instruments available to central banks in order to pursue these goals. It will focus on the transmission mechanisms of monetary policy and the differences between monetary policy rules and discretionary policy. It will also make connections between theoretical economic concepts and current real world issues.
ObjectiveThis lecture will introduce the fundamentals of monetary economics and explain the working and impact of monetary policy. The main aim of this course is to describe and analyze the goals of monetary policy and to review the instruments available to central banks in order to pursue these goals. It will focus on the transmission mechanisms of monetary policy, the effectiveness of monetary policy actions, the differences between monetary policy rules and discretionary policy, as well as in institutional issues concerning central banks, transparency of monetary authorities and monetary policy in a monetary union framework. Moreover, we discuss the implementation of monetary policy in practice and the design of optimal policy.
ContentFor the functioning of today’s economy, central banks and their policies play an important role. Monetary policy is the policy adopted by the monetary authority of a country, the central bank. The central bank controls either the interest rate payable on very short-term borrowing or the money supply, often targeting inflation or the interest rate to ensure price stability and general trust in the currency. This monetary policy course looks into today’s major questions related to policies of central banks. It provides insights into the monetary policy process using core economic principles and real-world examples.
Lecture notesThe course webpage (to be found at Link) contains announcements, course information and lecture slides.
LiteratureThe course will be based on chapters of:
Mishkin, Frederic S. (2018), The Economics of Money, Banking and Financial Markets, 12th edition, Pearson. ISBN 9780134733821
Prerequisites / NoticeBasic knowledge in international economics and a good background in macroeconomics.
Finance
NumberTitleTypeECTSHoursLecturers
401-8905-00LFinancial Engineering (University of Zurich)
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH.
UZH Module Code: MFOEC200

Mind the enrolment deadlines at UZH:
Link
W6 credits4GUniversity lecturers
AbstractThis lecture is intended for students who would like to learn more on equity derivatives modelling and pricing.
ObjectiveQuantitative models for European option pricing (including stochastic
volatility and jump models), volatility and variance derivatives,
American and exotic options.
ContentAfter introducing fundamental
concepts of mathematical finance including no-arbitrage, portfolio
replication and risk-neutral measure, we will present the main models
that can be used for pricing and hedging European options e.g. Black-
Scholes model, stochastic and jump-diffusion models, and highlight their
assumptions and limitations. We will cover several types of derivatives
such as European and American options, Barrier options and Variance-
Swaps. Basic knowledge in probability theory and stochastic calculus is
required. Besides attending class, we strongly encourage students to
stay informed on financial matters, especially by reading daily
financial newspapers such as the Financial Times or the Wall Street
Journal.
Lecture notesScript.
Prerequisites / NoticeBasic knowledge of probability theory and stochastic calculus.
Asset Pricing.
401-8913-00LAdvanced Corporate Finance I (University of Zurich)
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH.
UZH Module Code: MOEC0455

Mind the enrolment deadlines at UZH:
Link
W6 credits4GUniversity lecturers
AbstractThis course develops and refines tools for evaluating investments (capital budgeting), capital structure, and corporate securities. The course seeks to deepen students' understanding of the link between corporate finance theory and practice.
ObjectiveThis course develops and refines tools for evaluating investments
(capital budgeting), capital structure, and corporate securities. With
respect to capital structure, we start with the famous Miller and
Modigliani irrelevance proposition and then move on to study the effects
of taxes, bankruptcy costs, information asymmetries between firms and
the capital markets, and agency costs. In this context, we will also
study how leverage affects some central financial ratios that are often
used in practice to assess firms and their stock. Other topics include
corporate cash holdings, the use and pricing of convertible bonds, and
risk management. The latter two topics involve option pricing. With
respect to capital budgeting, the course pays special attention to tax
effects in valuation, including in the estimation of the cost of
capital. We will also study payout policy (dividends and share
repurchases). The course seeks to deepen students' understanding of the
link between corporate finance theory and practice. Various cases will
be assigned to help reach this objective.
ContentTopics covered
1. Capital structure: Perfect markets and irrelevance
2. Risk, leverage, taxes, and the cost of capital
3. Leverage and financial ratios
4. Payout policy: Dividends and share repurchases
5. Capital structure: Taxes and bankruptcy costs
6. Capital structure: Information asymmetries, agency costs, cash holdings
7. Valuation: DCF, adjusted present value and WACC
8. Valuation using options
9. The use and pricing of convertible bonds
10. Corporate risk management
Prerequisites / NoticeThis course replaces "Advanced Corporate Finance I" (MOEC0288), which will be discontinued from HS16.
Image Processing and Computer Vision
NumberTitleTypeECTSHoursLecturers
227-0447-00LImage Analysis and Computer Vision Information W6 credits3V + 1UL. Van Gool, E. Konukoglu, F. Yu
AbstractLight and perception. Digital image formation. Image enhancement and feature extraction. Unitary transformations. Color and texture. Image segmentation. Motion extraction and tracking. 3D data extraction. Invariant features. Specific object recognition and object class recognition. Deep learning and Convolutional Neural Networks.
ObjectiveOverview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises.
ContentThis course aims at offering a self-contained account of computer vision and its underlying concepts, including the recent use of deep learning.
The first part starts with an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First the interaction of light with matter is considered. The most important hardware components such as cameras and illumination sources are also discussed. The course then turns to image discretization, necessary to process images by computer.
The next part describes necessary pre-processing steps, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and 3D shape as two important examples. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. A major part at the end is devoted to deep learning and AI-based approaches to image analysis. Its main focus is on object recognition, but also other examples of image processing using deep neural nets are given.
Lecture notesCourse material Script, computer demonstrations, exercises and problem solutions
Prerequisites / NoticePrerequisites:
Basic concepts of mathematical analysis and linear algebra. The computer exercises are based on Python and Linux.
The course language is English.
Information and Communication Technology
NumberTitleTypeECTSHoursLecturers
227-0105-00LIntroduction to Estimation and Machine Learning Restricted registration - show details W6 credits4GH.‑A. Loeliger
AbstractMathematical basics of estimation and machine learning, with a view towards applications in signal processing.
ObjectiveStudents master the basic mathematical concepts and algorithms of estimation and machine learning.
ContentReview of probability theory;
basics of statistical estimation;
least squares and linear learning;
Hilbert spaces;
Gaussian random variables;
singular-value decomposition;
kernel methods, neural networks, and more
Lecture notesLecture notes will be handed out as the course progresses.
Prerequisites / Noticesolid basics in linear algebra and probability theory
227-0101-00LDiscrete-Time and Statistical Signal Processing Information W6 credits4GH.‑A. Loeliger
AbstractThe course introduces some fundamental topics of digital signal processing with a bias towards applications in communications: discrete-time linear filters, inverse filters and equalization, DFT, discrete-time stochastic processes, elements of detection theory and estimation theory, LMMSE estimation and LMMSE filtering, LMS algorithm, Viterbi algorithm.
ObjectiveThe course introduces some fundamental topics of digital signal processing with a bias towards applications in communications. The two main themes are linearity and probability. In the first part of the course, we deepen our understanding of discrete-time linear filters. In the second part of the course, we review the basics of probability theory and discrete-time stochastic processes. We then discuss some basic concepts of detection theory and estimation theory, as well as some practical methods including LMMSE estimation and LMMSE filtering, the LMS algorithm, and the Viterbi algorithm. A recurrent theme throughout the course is the stable and robust "inversion" of a linear filter.
Content1. Discrete-time linear systems and filters:
state-space realizations, z-transform and spectrum,
decimation and interpolation, digital filter design,
stable realizations and robust inversion.

2. The discrete Fourier transform and its use for digital filtering.

3. The statistical perspective:
probability, random variables, discrete-time stochastic processes;
detection and estimation: MAP, ML, Bayesian MMSE, LMMSE;
Wiener filter, LMS adaptive filter, Viterbi algorithm.
Lecture notesLecture Notes
227-0417-00LInformation Theory IW6 credits4GA. Lapidoth
AbstractThis course covers the basic concepts of information theory and of communication theory. Topics covered include the entropy rate of a source, mutual information, typical sequences, the asymptotic equi-partition property, Huffman coding, channel capacity, the channel coding theorem, the source-channel separation theorem, and feedback capacity.
ObjectiveThe fundamentals of Information Theory including Shannon's source coding and channel coding theorems
ContentThe entropy rate of a source, Typical sequences, the asymptotic equi-partition property, the source coding theorem, Huffman coding, Arithmetic coding, channel capacity, the channel coding theorem, the source-channel separation theorem, feedback capacity
LiteratureT.M. Cover and J. Thomas, Elements of Information Theory (second edition)
Material Modelling and Simulation
NumberTitleTypeECTSHoursLecturers
327-1201-00LTransport Phenomena IW5 credits4GJ. Vermant
AbstractPhenomenological approach to "Transport Phenomena" based on balance equations supplemented by thermodynamic considerations to formulate the undetermined fluxes in the local species mass, momentum, and energy balance equations; Solutions of a few selected problems relevant to materials science and engineering.
ObjectiveThe teaching goals of this course are on five different levels:
(1) Deep understanding of fundamentals: local balance equations, constitutive equations for fluxes, entropy balance, interfaces, idea of dimensionless numbers and scaling, ...
(2) Ability to use the fundamental concepts in applications
(3) Insight into the role of boundary conditions
(4) Knowledge of a number of applications.
(5) Flavor of numerical techniques: finite elements and finite differences.
ContentPart 1 Approach to Transport Phenomena
Diffusion Equation
Refreshing Topics in Equilibrium Thermodynamics
Balance Equations
Forces and Fluxes
Applications
1. Measuring Transport Coefficients
2. Pressure-Driven Flows and Heat exchange
Lecture notesThe course is based on the book D. C. Venerus and H. C. Öttinger, A Modern Course in Transport Phenomena (Cambridge University Press, 2018) and slides are presented
Literature1. D. C. Venerus and H. C. Öttinger, A Modern Course in Transport Phenomena (Cambridge University Press, 2018)
2. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, 2nd Ed. (Wiley, 2001)
3. L.G. Leal, Advanced Transport Phenomena (Oxford University Press, 2011)
4. W. M. Deen, Analysis of Transport Phenomena (Oxford University Press, 1998)
5. R. B. Bird, Five Decades of Transport Phenomena (Review Article), AIChE J. 50 (2004) 273-287
Prerequisites / NoticeComplex numbers. Vector analysis (integrability; Gauss' divergence theorem). Laplace and Fourier transforms. Ordinary differential equations (basic ideas). Linear algebra (matrices; functions of matrices; eigenvectors and eigenvalues; eigenfunctions). Probability theory (Gaussian distributions; Poisson distributions; averages; moments; variances; random variables). Numerical mathematics (integration). Equilibrium thermodynamics (Gibbs' fundamental equation; thermodynamic potentials; Legendre transforms). Maxwell equations. Programming and simulation techniques (Matlab, Monte Carlo simulations).
Quantum Chemistry
NumberTitleTypeECTSHoursLecturers
529-0003-01LAdvanced Quantum ChemistryW6 credits3GM. Reiher, A. Baiardi
AbstractAdvanced, but fundamental topics central to the understanding of theory in chemistry and for solving actual chemical problems with a computer.
Examples are:
* Operators derived from principles of relativistic quantum mechanics
* Relativistic effects + methods of relativistic quantum chemistry
* Open-shell molecules + spin-density functional theory
* New electron-correlation theories
ObjectiveThe aim of the course is to provide an in-depth knowledge of theory and method development in theoretical chemistry. It will be shown that this is necessary in order to be able to solve actual chemical problems on a computer with quantum chemical methods.

The relativistic re-derivation of all concepts known from (nonrelativistic) quantum mechanics and quantum-chemistry lectures will finally explain the form of all operators in the molecular Hamiltonian - usually postulated rather than deduced. From this, we derive operators needed for molecular spectroscopy (like those required by magnetic resonance spectroscopy). Implications of other assumptions in standard non-relativistic quantum chemistry shall be analyzed and understood, too. Examples are the Born-Oppenheimer approximation and the expansion of the electronic wave function in a set of pre-defined many-electron basis functions (Slater determinants). Overcoming these concepts, which are so natural to the theory of chemistry, will provide deeper insights into many-particle quantum mechanics. Also revisiting the workhorse of quantum chemistry, namely density functional theory, with an emphasis on open-shell electronic structures (radicals, transition-metal complexes) will contribute to this endeavor. It will be shown how these insights allow us to make more accurate predictions in chemistry in practice - at the frontier of research in theoretical chemistry.
Content1) Introductory lecture: basics of quantum mechanics and quantum chemistry
2) Einstein's special theory of relativity and the (classical) electromagnetic interaction of two charged particles
3) Klein-Gordon and Dirac equation; the Dirac hydrogen atom
4) Numerical methods based on the Dirac-Fock-Coulomb Hamiltonian, two-component and scalar relativistic Hamiltonians
5) Response theory and molecular properties, derivation of property operators, Breit-Pauli-Hamiltonian
6) Relativistic effects in chemistry and the emergence of spin
7) Spin in density functional theory
8) New electron-correlation theories: Tensor network and matrix product states, the density matrix renormalization group
Lecture notesA set of detailed lecture notes will be provided, which will cover the whole course. Please navigate to the lecture material starting here: Link
Literature1) M. Reiher, A. Wolf, Relativistic Quantum Chemistry, Wiley-VCH, 2014, 2nd edition
2) F. Schwabl: Quantenmechanik für Fortgeschrittene (QM II), Springer-Verlag, 1997
[english version available: F. Schwabl, Advanced Quantum Mechanics]
3) R. McWeeny: Methods of Molecular Quantum Mechanics, Academic Press, 1992
4) C. R. Jacob, M. Reiher, Spin in Density-Functional Theory, Int. J. Quantum Chem. 112 (2012) 3661
Link
5) K. H. Marti, M. Reiher, New Electron Correlation Theories for Transition Metal Chemistry, Phys. Chem. Chem. Phys. 13 (2011) 6750
Link
6) K.H. Marti, M. Reiher, The Density Matrix Renormalization Group Algorithm in Quantum Chemistry, Z. Phys. Chem. 224 (2010) 583
Link
7) E. Mátyus, J. Hutter, U. Müller-Herold, M. Reiher, On the emergence of molecular structure, Phys. Rev. A 83 2011, 052512
Link

Note also the standard textbooks:
A) A. Szabo, N.S. Ostlund. Verlag, Dover Publications
B) I. N. Levine, Quantum Chemistry, Pearson
C) T. Helgaker, P. Jorgensen, J. Olsen: Molecular Electronic-Structure Theory, Wiley, 2000
D) R.G. Parr, W. Yang: Density-Functional Theory of Atoms and Molecules, Oxford University Press, 1994
E) R.M. Dreizler, E.K.U. Gross: Density Functional Theory, Springer-Verlag, 1990
Prerequisites / NoticeStrongly recommended (preparatory) courses are: quantum mechanics and quantum chemistry
Simulation of Semiconductor Devices
NumberTitleTypeECTSHoursLecturers
227-0157-00LSemiconductor Devices: Physical Bases and Simulation Information W4 credits3GA. Schenk
AbstractThe course addresses the physical principles of modern semiconductor devices and the foundations of their modeling and numerical simulation. Necessary basic knowledge on quantum-mechanics, semiconductor physics and device physics is provided. Computer simulations of the most important devices and of interesting physical effects supplement the lectures.
ObjectiveThe course aims at the understanding of the principle physics of modern semiconductor devices, of the foundations in the physical modeling of transport and its numerical simulation. During the course also basic knowledge on quantum-mechanics, semiconductor physics and device physics is provided.
ContentThe main topics are: transport models for semiconductor devices (quantum transport, Boltzmann equation, drift-diffusion model, hydrodynamic model), physical characterization of silicon (intrinsic properties, scattering processes), mobility of cold and hot carriers, recombination (Shockley-Read-Hall statistics, Auger recombination), impact ionization, metal-semiconductor contact, metal-insulator-semiconductor structure, and heterojunctions.
The exercises are focussed on the theory and the basic understanding of the operation of special devices, as single-electron transistor, resonant tunneling diode, pn-diode, bipolar transistor, MOSFET, and laser. Numerical simulations of such devices are performed with an advanced simulation package (Sentaurus-Synopsys). This enables to understand the physical effects by means of computer experiments.
Lecture notesThe script (in book style) can be downloaded from: Link
LiteratureThe script (in book style) is sufficient. Further reading will be recommended in the lecture.
Prerequisites / NoticeQualifications: Physics I+II, Semiconductor devices (4. semester).
  •  Page  1  of  2 Next page Last page     All