Suchergebnis: Katalogdaten im Herbstsemester 2020

Mathematik Bachelor Information
Basisjahr
» Obligatorische Fächer des Basisjahres
» GESS Wissenschaft im Kontext
» Ergänzende Fächer
Repetition Basisjahr Mathematik BSc
NummerTitelTypECTSUmfangDozierende
900-9020-00LRepetition Basisjahr Mathematik und Physik BSc Belegung eingeschränkt - Details anzeigen 0 KPkeine Angaben
Kurzbeschreibung
Lernziel
Obligatorische Fächer des Basisjahres
Basisprüfungsblock 1
NummerTitelTypECTSUmfangDozierende
401-1151-00LLineare Algebra I Information Belegung eingeschränkt - Details anzeigen O7 KP4V + 2UM. Akka Ginosar
KurzbeschreibungEinführung in die Theorie der Vektorräume für Studierende der Mathematik und der Physik: Grundlagen, Vektorräume, lineare Abbildungen, Lösungen linearer Gleichungen, Matrizen, Determinanten, Endomorphismen, Eigenwerte, Eigenvektoren.
Lernziel- Beherrschung der Grundkonzepte der Linearen Algebra
- Einführung ins mathematische Arbeiten
Inhalt- Grundlagen
- Vektorräume und lineare Abbildungen
- Lineare Gleichungssysteme und Matrizen
- Determinanten
- Endomorphismen und Eigenwerte
Literatur- G. Fischer: Lineare Algebra. Springer-Verlag 2014. Siehe: http://link.springer.com/book/10.1007/978-3-658-03945-5
- K. Jänich: Lineare Algebra. Springer-Verlag 2004. Siehe: http://link.springer.com/book/10.1007/978-3-662-08375-8
- H.-J. Kowalsky, G. O. Michler: Lineare Algebra. Walter de Gruyter 2003. Siehe: https://www.degruyter.com/viewbooktoc/product/36737
- S. H. Friedberg, A. J. Insel und L. E. Spence: Linear Algebra. Pearson 2003. Link
- R. Pink: Lineare Algebra I und II. Zusammenfassung. Siehe: https://people.math.ethz.ch/%7epink/ftp/LA-Zusammenfassung-20180710.pdf
- H. Schichl und R. Steinbauer: Einführung in das mathematische Arbeiten. Springer-Verlag 2012. Siehe: http://link.springer.com/book/10.1007%2F978-3-642-28646-9
402-1701-00LPhysik I Belegung eingeschränkt - Details anzeigen O7 KP4V + 2UR. Grange
KurzbeschreibungDiese Vorlesung stellt eine erste Einführung in die Physik dar und behandelt Themen der klassischen Mechanik.
LernzielAneignung von Kenntnissen der physikalischen Grundlagen in der klassischen Mechanik. Fertigkeiten im Lösen von physikalischen Fragen anhand von Übungsaufgaben.
252-0847-00LInformatik Information Belegung eingeschränkt - Details anzeigen O5 KP2V + 2UM. Schwerhoff, F. Friedrich Wicker
KurzbeschreibungDie Vorlesung bietet eine Einführung in das Programmieren mit einem Fokus auf systematischem algorithmischem Problemlösen. Lehrsprache ist C++. Es wird keine Programmiererfahrung vorausgesetzt.
LernzielPrimäres Lernziel der Vorlesung ist die Befähigung zum Programmieren mit C++. Studenten beherrschen nach erfolgreichem Abschluss der Vorlesung die Mechanismen zum Erstellen eines Programms, sie kennen die fundamentalen Kontrollstrukturen, Datenstrukturen und verstehen, wie man ein algorithmisches Problem in ein Programm abbildet. Sie haben eine Vorstellung davon, was "hinter den Kulissen" passiert, wenn ein Programm übersetzt und ausgeführt wird.
Sekundäre Lernziele der Vorlesung sind das Computer-basierte, algorithmische Denken, Verständnis der Möglichkeiten und der Grenzen der Programmierung und die Vermittlung der Denkart eines Computerwissenschaftlers.
InhaltWir behandeln fundamentale Datentypen, Ausdrücke und Anweisungen, (Grenzen der) Computerarithmetik, Kontrollanweisungen, Funktionen, Felder, zusammengesetze Strukturen und Zeiger. Im Teil zur Objektorientierung werden Klassen, Vererbung und Polymorhpie behandelt, es werden exemplarisch einfache dynamische Datentypen eingeführt.
Die Konzepte der Vorlesung werden jeweils durch Algorithmen und Anwendungen motiviert und illustriert.
SkriptEin Skript in englischer Sprache wird semesterbegleitend herausgegeben. Das Skript und die Folien werden auf der Vorlesungshomepage zum Herunterladen bereitgestellt. Übungen werden online gelöst und abgegeben.
LiteraturBjarne Stroustrup: Einführung in die Programmierung mit C++, Pearson Studium, 2010
Stephen Prata: C++ Primer Plus, Sixth Edition, Addison Wesley, 2012
Andrew Koenig and Barbara E. Moo: Accelerated C++, Addison-Wesley, 2000.
Basisprüfungsblock 2
NummerTitelTypECTSUmfangDozierende
401-1261-07LAnalysis I Information Belegung eingeschränkt - Details anzeigen O10 KP6V + 3UG. Felder
KurzbeschreibungEinführung in die Differential- und Integralrechnung in einer reellen Veränderlichen: Grundbegriffe des mathematischen Denkens, Zahlen, Folgen und Reihen, topologische Grundbegriffe, stetige Funktionen, differenzierbare Funktionen, gewöhnliche Differentialgleichungen, Riemannsche Integration.
LernzielMathematisch exakter Umgang mit Grundbegriffen der Differential-und Integralrechnung.
LiteraturH. Amann, J. Escher: Analysis I
https://link.springer.com/book/10.1007/978-3-7643-7756-4

J. Appell: Analysis in Beispielen und Gegenbeispielen
https://link.springer.com/book/10.1007/978-3-540-88903-8

R. Courant: Vorlesungen über Differential- und Integralrechnung
https://link.springer.com/book/10.1007/978-3-642-61988-5

O. Forster: Analysis 1
https://link.springer.com/book/10.1007/978-3-658-00317-3

H. Heuser: Lehrbuch der Analysis
https://link.springer.com/book/10.1007/978-3-322-96828-9

K. Königsberger: Analysis 1
https://link.springer.com/book/10.1007/978-3-642-18490-1

W. Walter: Analysis 1
https://link.springer.com/book/10.1007/3-540-35078-0

V. Zorich: Mathematical Analysis I (englisch)
https://link.springer.com/book/10.1007/978-3-662-48792-1

A. Beutelspacher: "Das ist o.B.d.A. trivial"
https://link.springer.com/book/10.1007/978-3-8348-9599-8

H. Schichl, R. Steinbauer: Einführung in das mathematische Arbeiten
https://link.springer.com/book/10.1007/978-3-642-28646-9
Obligatorische Fächer
Prüfungsblock I
Im Prüfungsblock I muss entweder die Lerneinheit 402-2883-00L Physik III oder die Lerneinheit 402-2203-01L Allgemeine Mechanik gewählt und zur Prüfung angemeldet werden. (Die andere der beiden Lerneinheiten kann im ETH Bachelor-Studiengang Mathematik belegt, aber weder in myStudies zur Prüfung angemeldet noch für den Studiengang angerechnet werden.)
NummerTitelTypECTSUmfangDozierende
401-2303-00LFunktionentheorie Belegung eingeschränkt - Details anzeigen O6 KP3V + 2UA. Bandeira
KurzbeschreibungComplex functions of one variable, Cauchy-Riemann equations, Cauchy theorem and integral formula, singularities, residue theorem, index of closed curves, analytic continuation, special functions, conformal mappings, Riemann mapping theorem.
LernzielWorking knowledge of functions of one complex variables; in particular applications of the residue theorem.
LiteraturB. Palka: "An introduction to complex function theory."
Undergraduate Texts in Mathematics. Springer-Verlag, 1991.

E.M. Stein, R. Shakarchi: Complex Analysis. Princeton University Press, 2010

Th. Gamelin: Complex Analysis. Springer 2001

E. Titchmarsh: The Theory of Functions. Oxford University Press

D. Salamon: "Funktionentheorie". Birkhauser, 2011. (In German)

L. Ahlfors: "Complex analysis. An introduction to the theory of analytic functions of one complex variable." International Series in Pure and Applied Mathematics. McGraw-Hill Book Co.

K.Jaenich: Funktionentheorie. Springer Verlag

R.Remmert: Funktionentheorie I. Springer Verlag

E.Hille: Analytic Function Theory. AMS Chelsea Publications
401-2333-00LMethoden der mathematischen Physik I Information Belegung eingeschränkt - Details anzeigen O6 KP3V + 2UT. H. Willwacher
KurzbeschreibungFourierreihen. Lineare partielle Differentialgleichungen der mathematischen Physik. Fouriertransformation. Spezielle Funktionen und Eigenfunktionenentwicklungen. Distributionen. Ausgewählte Probleme aus der Quantenmechanik.
Lernziel
402-2883-00LPhysik III Belegung eingeschränkt - Details anzeigen W7 KP4V + 2UY. Chu
KurzbeschreibungEinführung in das Gebiet der Quanten- und Atomphysik und in die Grundlagen der Optik und statistischen Physik.
LernzielGrundlegende Kenntnisse in Quanten- und Atomphysik und zudem in Optik und statistischer Physik werden erarbeitet. Die Fähigkeit zur eigenständigen Lösung einfacher Problemstellungen aus den behandelten Themengebieten wird erreicht. Besonderer Wert wird auf das Verständnis experimenteller Methoden zur Beobachtung der behandelten physikalischen Phänomene gelegt.
InhaltEinführung in die Quantenphysik: Atome, Photonen, Photoelektrischer Effekt, Rutherford Streuung, Compton Streuung, de-Broglie Materiewellen.

Quantenmechanik: Wellenfunktionen, Operatoren, Schrödinger-Gleichung, Potentialtopf, harmonischer Oszillator, Wasserstoffatom, Spin.

Atomphysik: Zeeman-Effekt, Spin-Bahn Kopplung, Mehrelektronenatome, Röntgenspektren, Auswahlregeln, Absorption und Emission von Strahlung, LASER.

Optik: Fermatsches Prinzip, Linsen, Abbildungssysteme, Beugung und Brechung, Interferenz, geometrische und Wellenoptik, Interferometer, Spektrometer.

Statistische Physik: Wahrscheinlichkeitsverteilungen, Boltzmann-Verteilung, statistische Ensembles, Gleichverteilungssatz, Schwarzkörperstrahlung, Plancksches Strahlungsgesetz.
SkriptIm Rahmen der Veranstaltung wird ein Skript in elektronischer Form zur Verfügung gestellt.
LiteraturQuantenmechanik/Atomphysik/Moleküle: "Atom- und Quantenphysik", H. Haken and H. C. Wolf, ISBN 978-3540026211

Optik: "Optik", E. Hecht, ISBN 978-3486588613

Statistische Mechanik: "Statistical Physics", F. Mandl ISBN 0-471-91532-7
402-2203-01LAllgemeine Mechanik Information Belegung eingeschränkt - Details anzeigen W7 KP4V + 2UN. Beisert
KurzbeschreibungBegriffliche und methodische Einführung in die theoretische Physik: Newtonsche Mechanik, Zentralkraftproblem, Schwingungen, Lagrangesche Mechanik, Symmetrien und Erhaltungssätze, Kreisel, relativistische Raum-Zeit-Struktur, Teilchen im elektromagnetischen Feld, Hamiltonsche Mechanik, kanonische Transformationen, integrable Systeme, Hamilton-Jacobi-Gleichung.
LernzielGrundlegendes Verständnis der Mechanik im Rahmen der Langrange'schen und Hamilton'schen Formulierung. Detailliertes Verständnis wichtiger Anwendungen, insbesondere des Keplerproblems, der Physik von starren Körpern (Kreisel), sowie von Schwingungsphänomenen.
252-0851-00LAlgorithmen und Komplexität Belegung eingeschränkt - Details anzeigen O4 KP2V + 1UJ. Lengler
KurzbeschreibungEinführung: RAM-Maschine, Datenstrukturen; Algorithmen: Sortieren, Medianbest., Matrixmultiplikation, kürzeste Pfade, min. spann. Bäume; Paradigmen: Divide&Conquer, dynam. Programmierung, Greedy; Datenstrukturen: Suchbäume, Wörterbücher, Priority Queues; Komplexitätstheorie: Klassen P und NP, NP-vollständig, Satz von Cook, Beispiele für Reduktionen; Kryptographie und Zero-Knowledge-Protokolle.
LernzielNach dieser Vorlesung kennen die Studierenden einige Algorithmen und übliche Werkzeuge. Sie kennen die Grundlagen der Komplexitätstheorie und können diese verwenden, um Probleme zu klassifizieren.
InhaltDie Vorlesung behandelt den Entwurf und die Analyse von Algorithmen und Datenstrukturen. Die zentralen Themengebiete sind: Sortieralgorithmen, Effiziente Datenstrukturen, Algorithmen für Graphen und Netzwerke, Paradigmen des Algorithmenentwurfs, Klassen P und NP, NP-Vollständigkeit, Approximationsalgorithmen.
SkriptJa. Wird zu Beginn des Semesters verteilt.
Prüfungsblock II
NummerTitelTypECTSUmfangDozierende
401-2003-00LAlgebra I Information Belegung eingeschränkt - Details anzeigen O7 KP4V + 2UM. Einsiedler
KurzbeschreibungEinführung in die grundlegenden Begriffe und Resultate der Gruppentheorie, der Ringtheorie und der Körpertheorie.
LernzielEinführung in grundlegende Begriffe und Resultate aus der Theorie der Gruppen, der Ringe und der Körper.
InhaltGruppentheorie: Grundbegriffe und Beispiele von Gruppen, Untergruppen, Quotientengruppen, Homomorphismen, Gruppenoperationen, Sylowsätze, Anwendungen

Ringtheorie: Grundbegriffe und Beispiele von Ringen,
Ringhomomorphismen, Ideale, Faktorringe, euklidische Ringe, Hauptidealringe, faktorielle Ringe, Anwendungen

Körpertheorie: Grundbegriffe und Beispiele von Körpern, Körpererweiterungen, algebraische Erweiterungen, Anwendungen
LiteraturG. Fischer: Lehrbuch der Algebra, Vieweg Verlag
Karpfinger-Meyberg: Algebra, Spektrum Verlag
S. Bosch: Algebra, Springer Verlag
B.L. van der Waerden: Algebra I und II, Springer Verlag
S. Lang, Algebra, Springer Verlag
A. Knapp: Basic Algebra, Springer Verlag
J. Rotman, "Advanced modern algebra, 3rd edition, part 1"
http://bookstore.ams.org/gsm-165/
J.F. Humphreys: A Course in Group Theory (Oxford University Press)
G. Smith and O. Tabachnikova: Topics in Group Theory (Springer-Verlag)
M. Artin: Algebra (Birkhaeuser Verlag)
R. Lidl and H. Niederreiter: Introduction to Finite Fields and their Applications (Cambridge University Press)
GRUPPEN 3. Semester
NummerTitelTypECTSUmfangDozierende
900-9020-10LGruppen Mathematik BSc, 3. Semester Belegung eingeschränkt - Details anzeigen
Anhand dieser Lerneinheit wird die Gruppeneinteilung für den Besuch der Übungen vorgenommen. Die Einteilung ist fix und kann während des Semesters nicht mehr gewechselt werden.

Darf nur von Mathematikstudierenden im 3. Semester (und Repetenten) belegt werden.
O0 KPkeine Angaben
Kurzbeschreibung
Lernziel
Kernfächer
Kernfächer aus Bereichen der reinen Mathematik
NummerTitelTypECTSUmfangDozierende
401-3531-00LDifferential Geometry I
Höchstens eines der drei Bachelor-Kernfächer
401-3461-00L Funktionalanalysis I / Functional Analysis I
401-3531-00L Differentialgeometrie I / Differential Geometry I
401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory
ist im Master-Studiengang Mathematik anrechenbar. Die Kategoriezuordnung können Sie in diesem Fall nicht selber in myStudies vornehmen, sondern Sie müssen sich dazu nach dem Verfügen des Prüfungsresultates an das Studiensekretariat (www.math.ethz.ch/studiensekretariat) wenden.
W10 KP4V + 1UW. Merry
KurzbeschreibungThis will be an introductory course in differential geometry.

Topics covered include:

- Smooth manifolds, submanifolds, vector fields,
- Lie groups, homogeneous spaces,
- Vector bundles, tensor fields, differential forms,
- Integration on manifolds and the de Rham theorem,
- Principal bundles.
Lernziel
LiteraturThere are many excellent textbooks on differential geometry. A friendly and readable book that covers everything in Differential Geometry I is:

John M. Lee "Introduction to Smooth Manifolds" 2nd ed. (2012) Springer-Verlag.

A more advanced (and far less friendly) series of books that covers everything in both Differential Geometry I and II is:

S. Kobayashi, K. Nomizu "Foundations of Differential Geometry" Volumes I and II (1963, 1969) Wiley.
401-3461-00LFunctional Analysis I Belegung eingeschränkt - Details anzeigen
Höchstens eines der drei Bachelor-Kernfächer
401-3461-00L Funktionalanalysis I / Functional Analysis I
401-3531-00L Differentialgeometrie I / Differential Geometry I
401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory
ist im Master-Studiengang Mathematik anrechenbar. Die Kategoriezuordnung können Sie in diesem Fall nicht selber in myStudies vornehmen, sondern Sie müssen sich dazu nach dem Verfügen des Prüfungsresultates an das Studiensekretariat (www.math.ethz.ch/studiensekretariat) wenden.
W10 KP4V + 1UA. Carlotto
KurzbeschreibungBaire category; Banach and Hilbert spaces, bounded linear operators; basic principles: Uniform boundedness, open mapping/closed graph theorem, Hahn-Banach; convexity; dual spaces; weak and weak* topologies; Banach-Alaoglu; reflexive spaces; compact operators and Fredholm theory; closed range theorem; spectral theory of self-adjoint operators in Hilbert spaces.
LernzielAcquire a good degree of fluency with the fundamental concepts and tools belonging to the realm of linear Functional Analysis, with special emphasis on the geometric structure of Banach and Hilbert spaces, and on the basic properties of linear maps.
LiteraturRecommended references include the following:

Michael Struwe: "Funktionalanalysis I" (Skript available at https://people.math.ethz.ch/~struwe/Skripten/FA-I-2019.pdf)

Haim Brezis: "Functional analysis, Sobolev spaces and partial differential equations". Springer, 2011.

Peter D. Lax: "Functional analysis". Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York, 2002.

Elias M. Stein and Rami Shakarchi: "Functional analysis" (volume 4 of Princeton Lectures in Analysis). Princeton University Press, Princeton, NJ, 2011.

Manfred Einsiedler and Thomas Ward: "Functional Analysis, Spectral Theory, and Applications", Graduate Text in Mathematics 276. Springer, 2017.

Walter Rudin: "Functional analysis". International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, second edition, 1991.
Voraussetzungen / BesonderesSolid background on the content of all Mathematics courses of the first two years of the undergraduate curriculum at ETH (most remarkably: fluency with topology and measure theory, in part. Lebesgue integration and L^p spaces).
401-3001-61LAlgebraic Topology I Information W8 KP4GP. Biran
KurzbeschreibungThis is an introductory course in algebraic topology, which is the study of algebraic invariants of topological spaces. Topics covered include:
singular homology, cell complexes and cellular homology, the Eilenberg-Steenrod axioms.
Lernziel
Literatur1) G. Bredon, "Topology and geometry",
Graduate Texts in Mathematics, 139. Springer-Verlag, 1997.


2) A. Hatcher, "Algebraic topology",
Cambridge University Press, Cambridge, 2002.

Book can be downloaded for free at:
http://www.math.cornell.edu/~hatcher/AT/ATpage.html

See also:
http://www.math.cornell.edu/~hatcher/#anchor1772800


3) E. Spanier, "Algebraic topology", Springer-Verlag
Voraussetzungen / BesonderesYou should know the basics of point-set topology.

Useful to have (though not absolutely necessary) basic knowledge of the fundamental group and covering spaces (at the level covered in the course "topology").

Some knowledge of differential geometry and differential topology is useful but not strictly necessary.

Some (elementary) group theory and algebra will also be needed.
401-3145-70LAlgebraic Geometry I
Registration for this course unit has been closed.
W10 KP4V + 1UP. Yang
KurzbeschreibungThis course is an introduction to Algebraic Geometry (algebraic varieties).
LernzielLearning Algebraic Geometry.
LiteraturPrimary reference:
* I. R. Shafarevich, Basic Algebraic geometry 1 & 2, Springer-Verlag.
* M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publ., 1969.

Secondary reference:
* Ulrich Görtz and Torsten Wedhorn: Algebraic Geometry I, Advanced Lectures in Mathematics, Springer.
* Qing Liu: Algebraic Geometry and Arithmetic Curves, Oxford Science Publications.
* Robin Hartshorne: Algebraic Geometry, Graduate Texts in Mathematics, Springer.
* Siegfried Bosch: Algebraic Geometry and Commutative Algebra, Springer 2013.
* D. Eisenbud: Commutative algebra. With a view towards algebraic geometry, GTM 150, Springer Verlag, 1995.
* H. Matsumura, Commutative ring theory, Cambridge University Press 1989.
* N. Bourbaki, Commutative Algebra.

Other good textbooks and online texts are:
* David Eisenbud, Joe Harris: The Geometry of Schemes, Graduate Texts in Mathematics, Springer.
* Ravi Vakil, Foundations of Algebraic Geometry, http://math.stanford.edu/~vakil/216blog/
* Jean Gallier and Stephen S. Shatz, Algebraic Geometry http://www.cis.upenn.edu/~jean/algeom/steve01.html

"Classical" Algebraic Geometry over an algebraically closed field:
* Joe Harris, Algebraic Geometry, A First Course, Graduate Texts in Mathematics, Springer.
* J.S. Milne, Algebraic Geometry, http://www.jmilne.org/math/CourseNotes/AG.pdf

Further readings:
* Günter Harder: Algebraic Geometry 1 & 2
* Alexandre Grothendieck et al.: Elements de Geometrie Algebrique EGA
* Saunders MacLane: Categories for the Working Mathematician, Springer-Verlag.
Voraussetzungen / BesonderesLinear Algebra
401-3132-00LCommutative Algebra Information
Findet dieses Semester nicht statt.
401-3132-00L Commutative Algebra is not offered in the Autumn Semester 2020. However, a core course 401-3145-70L Algebraic Geometry I is offered instead.
W10 KP4V + 1Ukeine Angaben
KurzbeschreibungThis course provides an introduction to commutative algebra as a foundation for and first steps towards algebraic geometry.
LernzielWe shall cover approximately the material from
--- most of the textbook by Atiyah-MacDonald, or
--- the first half of the textbook by Bosch.
Topics include:
* Basics about rings, ideals and modules
* Localization
* Primary decomposition
* Integral dependence and valuations
* Noetherian rings
* Completions
* Basic dimension theory
LiteraturPrimary Reference:
1. "Introduction to Commutative Algebra" by M. F. Atiyah and I. G. Macdonald (Addison-Wesley Publ., 1969)
Secondary Reference:
2. "Algebraic Geometry and Commutative Algebra" by S. Bosch (Springer 2013)
Tertiary References:
3. "Commutative algebra. With a view towards algebraic geometry" by D. Eisenbud (GTM 150, Springer Verlag, 1995)
4. "Commutative ring theory" by H. Matsumura (Cambridge University Press 1989)
5. "Commutative Algebra" by N. Bourbaki (Hermann, Masson, Springer)
Voraussetzungen / BesonderesPrerequisites: Algebra I (or a similar introduction to the basic concepts of ring theory).
  •  Seite  1  von  4 Nächste Seite Letzte Seite     Alle