Suchergebnis: Katalogdaten im Frühjahrssemester 2020
Cyber Security Master | ||||||
Ergänzung | ||||||
Information Systems | ||||||
Kernfächer | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
263-2925-00L | Program Analysis for System Security and Reliability | W | 6 KP | 2V + 1U + 2A | P. Tsankov | |
Kurzbeschreibung | Security issues in modern systems (blockchains, datacenters, AI) result in billions of losses due to hacks. This course introduces the security issues in modern systems and state-of-the-art automated techniques for building secure and reliable systems. The course has a practical focus and covers systems built by successful ETH spin-offs. | |||||
Lernziel | * Learn about security issues in modern systems -- blockchains, smart contracts, AI-based systems (e.g., autonomous cars), data centers -- and why they are challenging to address. * Understand how the latest automated analysis techniques work, both discrete and probabilistic. * Understand how these techniques combine with machine-learning methods, both supervised and unsupervised. * Understand how to use these methods to build reliable and secure modern systems. * Learn about new open problems that if solved can lead to research and commercial impact. | |||||
Inhalt | Part I: Security of Blockchains - We will cover existing blockchains (e.g., Ethereum, Bitcoin), how they work, what the core security issues are, and how these have led to massive financial losses. - We will show how to extract useful information about smart contracts and transactions using interactive analysis frameworks for querying blockchains (e.g. Google's Ethereum BigQuery). - We will discuss the state-of-the-art security tools (e.g., https://securify.ch) for ensuring that smart contracts are free of security vulnerabilities. - We will study the latest automated reasoning systems (e.g., https://verx.ch) for checking custom (temporal) properties of smart contracts and illustrate their operation on real-world use cases. - We will study the underlying methods for automated reasoning and testing (e.g., abstract interpretation, symbolic execution, fuzzing) are used to build such tools. Part II: Security of Datacenters and Networks - We will show how to ensure that datacenters and ISPs are secured using declarative reasoning methods (e.g., Datalog). We will also see how to automatically synthesize secure configurations (e.g. using SyNET and NetComplete) which lead to desirable behaviors, thus automating the job of the network operator and avoiding critical errors. - We will discuss how to apply modern discrete probabilistic inference (e.g., PSI and Bayonet) so to reason about probabilistic network properties (e.g., the probability of a packet reaching a destination if links fail). Part III: Machine Learning for Security - We will discuss how machine learning models for structured prediction are used to address security tasks, including de-obfuscation of binaries (Debin: https://debin.ai), Android APKs (DeGuard: http://apk-deguard.com) and JavaScript (JSNice: http://jsnice.org). - We will study to leverage program abstractions in combination with clustering techniques to learn security rules for cryptography APIs from large codebases. - We will study how to automatically learn to identify security vulnerabilities related to the handling of untrusted inputs (cross-Site scripting, SQL injection, path traversal, remote code execution) from large codebases. To gain a deeper understanding, the course will involve a hands-on programming project where the methods studied in the class will be applied. | |||||
Wahlfächer | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
252-0312-00L | Ubiquitous Computing | W | 4 KP | 2V + 1A | C. Holz, F. Mattern, S. Mayer | |
Kurzbeschreibung | Unlike desktop computing, ubiquitous computing occurs anytime and everywhere, using any device, in any location, and in any format. Computers exist in different forms, from watches and phones to refrigerators or pairs of glasses. Main topics: Smart environments, IoT, mobiles & wearables, context & location, sensing & tracking, computer vision on embedded systems, health monitoring, fabrication. | |||||
Lernziel | Unlike desktop computing, ubiquitous computing occurs anytime and everywhere, using any device, in any location, and in any format. Computers exist in different forms, from watches and phones to refrigerators or pairs of glasses. Main topics: Smart environments, IoT, mobiles & wearables, context & location, sensing & tracking, computer vision on embedded systems, health monitoring, fabrication. | |||||
Skript | Copies of slides will be made available | |||||
Literatur | Will be provided in the lecture. To put you in the mood: Mark Weiser: The Computer for the 21st Century. Scientific American, September 1991, pp. 94-104 |
- Seite 1 von 1