Search result: Catalogue data in Spring Semester 2020

MAS in Medical Physics Information
Specialization: General Medical Physics and Biomedical Engineering
Major in Neuroinformatics
Electives
NumberTitleTypeECTSHoursLecturers
227-1046-00LComputer Simulations of Sensory Systems Information
Does not take place this semester.
W3 credits3G
AbstractThis course deals with computer simulations of the human auditory, visual, and balance system. The lecture will cover the physiological and mechanical mechanisms of these sensory systems. And in the exercises, the simulations will be implemented with Python. The simulations will be such that their output could be used as input for actual neuro-sensory prostheses.
Learning objectiveOur sensory systems provide us with information about what is happening in the world surrounding us. Thereby they transform incoming mechanical, electromagnetic, and chemical signals into “action potentials”, the language of the central nervous system.
The main goal of this lecture is to describe how our sensors achieve these transformations, how they can be reproduced with computational tools. For example, our auditory system performs approximately a “Fourier transformation” of the incoming sound waves; our early visual system is optimized for finding edges in images that are projected onto our retina; and our balance system can be well described with a “control system” that transforms linear and rotational movements into nerve impulses.
In the exercises that go with this lecture, we will use Python to reproduce the transformations achieved by our sensory systems. The goal is to write programs whose output could be used as input for actual neurosensory prostheses: such prostheses have become commonplace for the auditory system, and are under development for the visual and the balance system. For the corresponding exercises, at least some basic programing experience is required!!
ContentThe following topics will be covered:
• Introduction into the signal processing in nerve cells.
• Introduction into Python.
• Simplified simulation of nerve cells (Hodgkins-Huxley model).
• Description of the auditory system, including the application of Fourier transforms on recorded sounds.
• Description of the visual system, including the retina and the information processing in the visual cortex. The corresponding exercises will provide an introduction to digital image processing.
• Description of the mechanics of our balance system, and the “Control System”-language that can be used for an efficient description of the corresponding signal processing (essentially Laplace transforms and control systems).
Lecture notesFor each module additional material will be provided on the e-learning platform "moodle". The main content of the lecture is also available as a wikibook, under http://en.wikibooks.org/wiki/Sensory_Systems
LiteratureOpen source information is available as wikibook http://en.wikibooks.org/wiki/Sensory_Systems

For good overviews I recommend:

• Principles of Neural Science (5th Ed, 2012), by Eric Kandel, James Schwartz, Thomas Jessell, Steven Siegelbaum, A.J. Hudspeth
ISBN 0071390111 / 9780071390118
THE standard textbook on neuroscience.

• L. R. Squire, D. Berg, F. E. Bloom, Lac S. du, A. Ghosh, and N. C. Spitzer. Fundamental Neuroscience, Academic Press - Elsevier, 2012 [ISBN: 9780123858702].
This book covers the biological components, from the functioning of an individual ion channels through the various senses, all the way to consciousness. And while it does not cover the computational aspects, it nevertheless provides an excellent overview of the underlying neural processes of sensory systems.

• G. Mather. Foundations of Sensation and Perception, 2nd Ed Psychology Press, 2009 [ISBN: 978-1-84169-698-0 (hardcover), oder 978-1-84169-699-7 (paperback)]
A coherent, up-to-date introduction to the basic facts and theories concerning human sensory perception.

• The best place to get started with Python programming are the https://scipy-lectures.org/
Prerequisites / Notice• Since I have to gravel from Linz, Austria, to Zurich to give this lecture, I plan to hold this lecture in blocks (every 2nd week).
• In addition to the lectures, this course includes external lab visits to institutes actively involved in research on the relevant sensory systems.
376-1792-00LIntroductory Course in Neuroscience II (University of Zurich)
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH.
UZH Module Code: SPV0Y020

Mind the enrolment deadlines at UZH:
https://www.uzh.ch/cmsssl/en/studies/application/mobilitaet.html
W2 credits2VUniversity lecturers
AbstractThis course discusses behavioral aspects in neuroscience. Modern brain imaging methods are described. Clinical issues including diseases of the nervous system are studied. Sleep research and neuroimmunology are discussed. Finally, the course deals with the basic concepts in psychiatry.
Learning objective
Prerequisites / NoticeFür Doktorierende des Zentrums für Neurowissenschaften Zürich.
  •  Page  1  of  1