Search result: Catalogue data in Spring Semester 2020

Geomatic Engineering Master Information
Major Courses
Major in Engineering Geodesy and Photogrammetry
NumberTitleTypeECTSHoursLecturers
103-0738-00LGNSS LabW5 credits4GR. Hohensinn, G. Möller
AbstractConsolidation of knowledge in satellite geodesy and its application to GNSS.
ObjectiveStudents know the technological background of GNSS. They are able to interpret and to qualify GNSS results and to carry out error estimations. Autonomous work on GNSS-related problems.
ContentAutonomous development, planning, and carrying out of a small GNSS-project. As needed further satellite geodetic background will be given ( GNSS-positioning and navigation, satellite orbits, consolidated knowledge of GNSS, observation equations, principles of measurements, disturbances, practical operation)
Lecture notesNavigation, Alain Geiger, GGL-ETHZ
GNSS, Markus Rothacher, GGL-ETHZ
103-0838-00LGeomonitoring and GeosensorsW4 credits3GA. Wieser, M. Rothacher
AbstractThis course provides an introduction to sensors, measurement techniques and analysis methods for geodetic monitoring of natural structures of local to regional scale like landslides, rock falls, volcanoes and tsunamis. Several case studies will highlight the application of the presented technologies.
ObjectiveUnderstanding the core challenges and proven approaches to monitoring of local and regional deformation; gaining an overview of established measurement and data processing techniques for monitoring geometric changes.
ContentIntroduction to geomonitoring; sensors and measurement technologies: GNSS, TPS, TLS, GB-SAR, geosensor networks, geotechnical monitoring sensors; areal and point-wise deformation monitoring; congruency tests, network deformation analysis, sensitivity, regression and jump detection; estimation of strain tensor, block analysis; case studies.
Lecture notesThe lecture slides and further literature will be made available on the course webpage.
Prerequisites / NoticeStudents should be familiar with geodetic networks, parameter estimation, GNSS and Engineering Geodesy. Students who have not taken the related courses of the ETH curriculum (or equivalent courses at another university) but want to take this course should contact the lecturers beforehand.
103-0128-00LRemote Sensing Lab Restricted registration - show details W4 credits2GE. Baltsavias
AbstractThis course focuses mainly on photogrammetric processing and classification of optical and especially multispectral satellite images with practical work and own programming.
ObjectiveThe aims of this course are:
- the main aim is practical photogrammetric processing and classification of optical and especially multispectral satellite images using mostly own programming in MATLAB and less commercial software tools.
- some theoretical background will be provided, in addition to other ETHZ courses mentioned below (mainly given in Bachelor).
- further developing skills in report writing and presentations.
ContentThe lecture builds on the courses Erdbeobachtung (Earth Observation), Photogrammetrie, Photogrammetrie II, Image Interpretation and Bildverarbeitung (Image Processing). The focus is on practical work and use of programs with optical satellite data.

The work is composed of two large labs. In the first, the main photogrammetric processing chain from preprocessing to visualisation is treated. In the second, the focus is on various multispectral classification techniques and their comparison.
Lecture notesTeaching material will be made available on the dedicated moodle page.
Prerequisites / NoticePersons without sufficient knowledge of remote sensing, photogrammetry and image processing, should first contact the lecturer and get permission to attend the course. Students should preferably have a basic knowledge of MATLAB programming or being willing to acquire it through self-study.
103-0848-00LIndustrial Metrology and Machine Vision Restricted registration - show details
Number of participants limited to 30.
W4 credits3GK. Schindler, A. Wieser
AbstractThis course introduces contact and non-contact techniques for 3D coordinate, shape and motion determination as used for 3D inspection, dimensional control, reverse engineering, motion capture and similar industrial applications.
ObjectiveUnderstanding the physical basis of photographic sensors and imaging; familiarization with a broader view of image-based 3D geometry estimation beyond the classical photogrammetric approach; understanding the concepts of measurement traceability and uncertainty; acquiring an overview of general 3D image metrology including contact and non-contact techniques (coordinate measurement machines; optical tooling; laser-based high-precision instruments).
ContentCCD and CMOS technology; structured light and active stereo; shading models, shape from shading and photometric stereo; shape from focus; laser interferometry, laser tracker, laser radar; contact and non-contact coordinate measurement machines; optical tooling; measurement traceability, measurement uncertainty, calibration of measurement systems; 3d surface representations; case studies.
Lecture notesLecture slides and further literature will be made available on the course webpage.
103-0767-00LEngineering Geodesy LabW4 credits3PA. Wieser, V. Frangez, Z. Gojcic
AbstractDevelopment of concepts and solutions for challenging tasks in Engineering Geodesy using real-world examples
ObjectiveThe students learn to develop, assess and realize concepts and solutions for real-world problems in Engineering Geodesy. They advance the knowledge and skills which they have acquired in relation with geodetic metrology, engineering geodesy. They establish links between these subjects. Particular attention is paid to the selection of appropriate sensors and measurement systems, selection of appropriate measurement and data processing methods, end-to-end quality control, fulfillment of non-technical criteria, and to the documentation of the work.
ContentA geodetic network for highly precise coordinate and direction transfer from outside pillars to pillars in the geodetic metrology lab of the Institute of Geodesy and Photogrammetry will be designed and planned. Different methods for plumbing, height transfer and azimuth determination will be included. The measurements will be carried out and post-processed in teams. Finally, the network design, the observation schedule and the results will be critically evaluated.
Lecture notesPublications and documents are made available as needed depending on the selected tasks.
Literature- Möser, M. et al. (2000): Handbuch Ingenieurgeodäsie, Grundlagen. Wichmann, Heidelberg.
- Heunecke et al. (2013): Handbuch Ingenieurgeodäsie, Auswertung geodätischer Überwachungsmessungen. 2. Aufl., Wichmann, Heidelberg.
- Schofield, W. and Breach, M. (2007): Engineering Surveying. 6th Edition, CRC, Boca Raton, USA.
- Caspary, W.F. (2000): Concepts of Network and Deformation Analysis. School of Geomatic Engineering, The University of New South Wales, Sydney, Australia.
Prerequisites / NoticeSuccessful participation in the lab requires knowledge and experiences conveyed within the related course "Engineering Geodesy". Students who have not already passed that course and who are not participating in that course will only be admitted to the lab after discussion with the instructors.

If the timetable of the participants allows it, the 3-hourly lab units will partially be combined to individual full-time units.
052-0524-00L360° - Reality to Virtuality (FS) Information Restricted registration - show details W2 credits2GK. Sander
AbstractBasics of 3D-scanning of rooms and bodies, individual scan projects, 3D-visualizations and animations. Definition and realization of a project, working alone and in groups.
ObjectiveUnderstanding 3D-technologies, handling positive and negative spaces, handling hardware and software, processing 3D point clouds (registering scans, filtering, merging of data sets, precision, visualizations, animation), interpretation of the generated data.
Content1. Introduction to 3D laser scanning (getting to know technologies, methods and context; carry out practical tests)
2. Project development within the group (idea, concept, target, intention, selection of methods & strategies)
3. Project implementation within the group (possible results, videos, pictures, prints, publications, web, blog, forum etc.)
4. Project presentation (exhibition incl. critiques, discussions)
Major in Space Geodesy and Navigation
NumberTitleTypeECTSHoursLecturers
103-0158-01LNavigationW5 credits4GG. Möller
AbstractIntroduction to the concepts and basics of navigation related total systems on land, air, sea and space
ObjectiveThe students gain an overview of human spatial navigation concepts as well as modern navigation systems and their major principles. The students are able to deepen their knowledge by their own and recognize and understand principles of systems in different applications.
ContentConcepts of human spatial navigation, Reference systems, Navigation principles, Statistics in Navigation, Filtering, Basics of state space control systems, Satellite navigation systems, Vehicle nav, Air traffic control systems, Spacecraft and autonomous navigation.
Lecture notesMoeller G., Navigation, Lecture notes
LiteratureEkstrom A. D., Spiers H. J., BohbotV. D., Rosenbaum R. S., Human Spatial Navigation, Prinction University Press, ISBN 9780691171746, 216 p., 2018

Hofmann-Wellenhof B., Legat K., Wieser M., Navigation, Springer Nature, ISBN 9783211008287, 427 p., 2003
103-0178-00LGeodetic Earth MonitoringW4 credits3GM. Rothacher
AbstractThe three pillars of geodesy, i.e. the geometry, rotation and gravity field of the Earth contribute to Earth system monitoring and will be considered here. 1) Earth rotation: theory, estimation and interpretation; 2) Gravity field: satellite missions, theory, estimation and interpretation; 3) Geodynamics (geometry): plate tectonics, earthquake cycle, isostasy and uplift rates.
ObjectiveUnderstand the basics of Earth rotation and gravity field theory, with what type of methods they are determined and what they contribute to monitoring the Earth system. Get familiar with the major geodynamic processes within the crust and mantle and how they are being observed and monitored.
ContentPart 1: Earth rotation
- Kinematics of a solid body
- Dynamic Eulerian equations of Earth rotation
- Kinematic Eulerian equations of Earth rotation
- Free rotation of the flattened Earth
- Influence of Sun and Moon, Precession, Nutation
- Earth as an elastic body
- Determination of Earth rotation parameters
- Mass distribution and mass transport affecting Earth rotation
Part 2: Gravity field
- Satellite missions
- Gravity field determination from satellite data
- Geoid computation from terrestrial data
- Combination of satellite and terrestrial gravity fields
- Precision of geoid computations
- Mass distribution and transport affecting the Earth gravity field
Part 3: Geodynamics:
- Plate tectonics theory: including ocean bottom floor magnetism Curie temperature, age of the ocean bottom floor
- Notions on crust material (oceanic/continental)
- Concepts of mantle plumes, mantle convection and mantle flow and evidences supporting them
- Earthquake cycle: elastic rebound theory, strain and stress measurements and measurements in the field during inter-, co- and post-seismic periods
- Isostasy and strength models
- Surface uplift rate applied to continental crust, volcanism, eroded areas.
Lecture notesA script and slides will be made available
LiteratureBeutler G., Methods of Celestial Mechanics. II: Application to Planetary System, Geodynamics and Satellite Geodesy, Springer, ISBN 3-540-40750-2, 2005.

Hofmann-Wellenhof B. and Moritz H., Physical Geodesy, Springer, ISBN 13-978-3-211-33544-4, 2005/2006.

Fowler C.M.R., The Solid Earth: An Introduction to Global Geophysics, Cambridge Univ. Press, ISBN 0-521-38590-3, 2005.
Prerequisites / NoticeRecommended: Basics of Higher Geodesy
Of advantage: Basics of Geodetic Earth Observation
103-0738-00LGNSS LabW5 credits4GR. Hohensinn, G. Möller
AbstractConsolidation of knowledge in satellite geodesy and its application to GNSS.
ObjectiveStudents know the technological background of GNSS. They are able to interpret and to qualify GNSS results and to carry out error estimations. Autonomous work on GNSS-related problems.
ContentAutonomous development, planning, and carrying out of a small GNSS-project. As needed further satellite geodetic background will be given ( GNSS-positioning and navigation, satellite orbits, consolidated knowledge of GNSS, observation equations, principles of measurements, disturbances, practical operation)
Lecture notesNavigation, Alain Geiger, GGL-ETHZ
GNSS, Markus Rothacher, GGL-ETHZ
103-0838-00LGeomonitoring and GeosensorsW4 credits3GA. Wieser, M. Rothacher
AbstractThis course provides an introduction to sensors, measurement techniques and analysis methods for geodetic monitoring of natural structures of local to regional scale like landslides, rock falls, volcanoes and tsunamis. Several case studies will highlight the application of the presented technologies.
ObjectiveUnderstanding the core challenges and proven approaches to monitoring of local and regional deformation; gaining an overview of established measurement and data processing techniques for monitoring geometric changes.
ContentIntroduction to geomonitoring; sensors and measurement technologies: GNSS, TPS, TLS, GB-SAR, geosensor networks, geotechnical monitoring sensors; areal and point-wise deformation monitoring; congruency tests, network deformation analysis, sensitivity, regression and jump detection; estimation of strain tensor, block analysis; case studies.
Lecture notesThe lecture slides and further literature will be made available on the course webpage.
Prerequisites / NoticeStudents should be familiar with geodetic networks, parameter estimation, GNSS and Engineering Geodesy. Students who have not taken the related courses of the ETH curriculum (or equivalent courses at another university) but want to take this course should contact the lecturers beforehand.
103-0157-00LPhysical Geodesy and GeodynamicsW4 credits3GM. Rothacher
AbstractGravity field of the earth. Equipotential surfaces and geoid determination. Fundamentals in Potential Theory and inversion methods. Measuring techniques and gravity anomalies.
ObjectiveObtain knowledge in Physical Geodesy as a fundamental topic forming the basis for Geomatics and Geodynamics. Acquire skills in calculus covered in Physical Geodesy.
ContentGravity field of the earth and its parameterization. Equipotential surfaces, deflections of the vertical and geoid determination. Fundamentals in Potential Theory and inversion methods. Gravimetric measuring techniques and gravity anomalies.
Prerequisites / NoticePre-Requisite: Basics of Higher Geodesy
Major in GIS and Cartography
NumberTitleTypeECTSHoursLecturers
103-0228-00LMultimedia Cartography
Prerequisite: Successful completion of Cartography III (103-0227-00L).
O4 credits3GH.‑R. Bär, R. Sieber
AbstractFocus of this course is on the realization of an atlas project in a small team. During the first part of the course, the necessary organizational, creative and technological basics will be provided. At the end of the course, the interactive atlas projects will be presented by the team members.
ObjectiveThe goal of this course is to provide the students the theoretical background, knowledge and practical skills necessary to plan, design and create an interactive Web atlas based on modern Web technologies.
ContentThis course will cover the following topics:

- Web map design
- Project management
- Graphical user interfaces in Web atlases
- Interactions in map and atlas applications
- Web standards
- Programming interactive Web applications
- Use of software libraries
- Cartographic Web services
- Code repository
- Copyright and the Internet
Lecture notesLecture notes and additional material are available on Moodle.
Literature- Cartwright, William; Peterson, Michael P. and Georg Gartner (2007); Multimedia Cartography, Springer, Heidelberg
Prerequisites / NoticePrerequisites: Successful completion of Cartography III (103-0227-00L).
Previous knowledge in Web programming.

The students are expected to
- present their work in progress on a regular basis
- present their atlas project at the end of the course
- keep records of all the work done
- document all individual contributions to the project
103-0247-00LMobile GIS and Location-Based ServicesO5 credits4GP. Kiefer
AbstractThe course introduces students to the theoretical and technological background of mobile geographic information systems and location-based services. In lab sessions students acquire competences in mobile GIS design and implementation.
ObjectiveStudents will
- learn about the implications of mobility on GIS
- get a detailed overview on research fields related to mobile GIS
- get an overview on current mobile GIS and LBS technology, and learn how to assess new technologies in this fast-moving field
- achieve an integrated view of Geospatial Web Services and mobile GIS
- acquire competences in mobile GIS design and implementation
Content- LBS and mobile GIS: architectures, market, applications, and application development
- Development for Android
- Introduction to augmented reality development (HoloLens)
- Mobile decision-making, context, personalization, and privacy
- Mobile human computer interaction and user interfaces
- Mobile behavior interpretation
Prerequisites / NoticeElementary programming skills (Java)
103-0747-00LCartography LabW6 credits13AL. Hurni
AbstractIndependent practical work in cartography.
ObjectiveIndependent practical work in cartography.
ContentChoice of theme upon individual agreement.
Lecture notesInformation sheet will be distributed by the supervisors
Prerequisites / NoticeCartography Fundamentals
Major in Planning
NumberTitleTypeECTSHoursLecturers
103-0458-00LEconomical Land Use
Only for MSc Students or special approval by the lecturer.
W3 credits2GR. Nebel
AbstractThe lecture demonstrates current trends of land use, arguments for an economical handling of land and instruments as well as procedures to implement economical land use in practice. This is considered on different planning levels, especially on the regional level. The main focus is the introduction of a comprehensive settlement management in the light of current trends of land use.
ObjectiveStudents learn to understand backgrounds, basic principles, goals and approaches of appropriate and economical use of land as a scarce resource. They are able to summarise in a comprehensible way the core arguments for redevelopment before new development. Furthermore, students can illustrate how to implement economical land use in a differentiated and customised manner.
Content- settlement development and land use: facts, trends, causes and consequences
- redevelopment before new development: basic principles and strategic goals
- overviews of existing land reserves
- formal and informal instruments and procedures
- comprehensive settlement management: implementation on municipal, regional and national level
Lecture notesThe documents for the lecture are available on Moodle.
Prerequisites / NoticeEligible only for master students, otherwise a special permisson by the lecturer is required.
103-0318-02LGIS-Based 3D Landscape Visualization Restricted registration - show details
Limited number of participants.

Please send an email to the lecturer to make sure that places are still available.
W3 credits2GU. Wissen Hayek
AbstractConcepts, methods and techniques for 3D landscape visualization and their application in landscape and environmental planning. Practical application of a workflow for 3D landscape visualization. Reflection of relevant aspects such as the choice of viewpoints, the landscape sections, or the level of detail, and their effects on the perception of the visualized landscape.
ObjectiveThe main goals of this lab are (1) to know digital techniques for 3D landscape visualization, (2) to know different examples and application areas for GIS-based 3D landscape visualizations, (3) to establish software skills in 3D landscape visualization, and (4) to be able to explain principles of 3D landscape visualization, which are important for landscape and environmental planning situations, and to apply these for the evaluation or the planning of 3D landscape visualizations.
ContentThe lectures provide an introduction to the area of GIS-based 3D landscape visualization and on visualization principles. Examples of 3D landscape visualizations generated and applied in different projects are presented. The theoretical principles for 3D landscape visualization are further deepened in small exercises during the whole course. These exercises are organized in such a way, that a workflow for 3D landscape visualization can be reproduced. Thereby aspects such as the choice of viewpoints, the sections of a landscape, or the level of detail, and their effects on the perception of the visualized landscape are reflected.
Lecture notesHandouts of the slides used in the lectures will be made available for download.
Prerequisites / NoticeWill be specified in the course.
103-0338-00LProject Week in Landscape Development Information Restricted registration - show details
Number of participants limited to 24.
W5 credits9PS.‑E. Rabe, E. Celio, A. Grêt-Regamey
AbstractIn particular, the aspects measuring, understanding and assessing of landscape-relevant land-use, requirements and developments will be taught. Concerning the landscape development in a project area, aims will be developed and corresponding actions defined.
ObjectiveThe students are able to:
- recognize and undestand the history of land-use
- recognize and undestand the context of arrangement of a landscape
- assess a landscape in its entirety and in its single-elements
- understand and apply the concepts of the landscape approach
- prepare and provide substantiated actions
ContentThe course consists of
- four theoretical inputs from internal and external speakers
- a preliminary excursion to the project area
- two exercises for preparation
- the project week and the preparation of a report

Depending on the subject area to be processed (eg. water, landscape aesthetics, natural hazards, nature conservation), different methods are used.
This applies to both the methods of investigation of landscape-elements and characteristics as well as the methods for evaluation of landscape-elements and characteristics.

Subjects and methods are developed and defined in the preparation to be applied in the project week. Based on the assessments actions will be developed that are adapted to the definde question or problem in the light of a desirable development.
Lecture notes- Handouts
- Copies of selected literature

Download: Link
LiteratureWill be named in the course.
Prerequisites / NoticeRequirements are an interest in landscape-related issues and commitment to developing proposals for solutions.
Prerequisite: Knowledge and skills equivalent the course 103-0357-00 Umweltplanung
103-0428-02LSpatial Design and Argumentation in Planning
Only for MSc Students or special approval by the lecturer.
W6 credits4GM. Nollert, M. Koll-Schretzenmayr, T. Lannuzel
AbstractDesigning and presenting arguments are two essential components of acting in spatial planning. Spatial design as instrument for investigating and testing of possible solutions and options of action or, in addition, for finding central questions. Arguing, in order to be able to communicate suggested decisions or actions inside the planning process and to win relevant actors over those.
ObjectiveGoal of the lecture is to obtain the basic knowledge of designing and presenting argumentations in spatial planning. With reference on a practical case study typical characteristics and the connections between arguing and designing in spatial planning are worked out.
In terms of arguing the students should be enabled to substantiate their decisions with different techniques, in order to compile clearly understandable and convincing argumentations and successfully communicate them. This includes beside an adequate handling of different kinds of information coding (like texts, pictures and numbers), also dealing with uncertainties, which is a typical asset of the argumentation in spatial planning.
In terms of spatial design, the understanding of this specific and unconventional instrument is to be provided and to be trained on the basis of different cases. Beside the development of an „intuition/sensibility“ for designing in spatial planning and the ability to handle different scales (from national contexts down to the proofing of the principal possibilities for development on the scale of architectural design), the discernment of decisive criteria for the possible employment and the application of spatial design is also to be trained.
Lecture notesThe documents for the lecture can be found in Moodle
Prerequisites / NoticeSpatial Planning Design

Spatial Planning Design is used as a tool for exploration and testing. Overall goal is the obtainment of basic knowledge for general recommendations and specific strategies in the case of difficult and unclear tasks. However, it is not intended to create drafts for direct implementation in reality.

Even if current problems and questions occuring in the dimension of spatial planning might show some correlation, the spaces themselves, the diversity of urban patterns and interests widely differ. This is particularly the case in highly developed Europe. As soon as conventional solutions and standards fail in the case of difficult and vast questions, modern spatial planning operates by using the method of designing.

In contrast to the method of designing on the basis of a given programme, which is common in the fields of urban design and architecture, spatial planning is generally operating with comprehensive and open terms of reference. Thus, in order to achieve safe results, spatial planning uses all imaginable scopes and freedoms of research.

Not every case and every problem in spatial planning cause an examination by using the method of designing. In frequent cases difficulties not only arise in identifying the right scale of design but rather in selecting the appropriate informal procedures. Furthermore, scales are not necessarily the same as they are typically used in regional- and urban planning. The verification of the general ability to develop an area in the scale of architecture is possible as well.
701-1522-00LMulti-Criteria Decision Analysis Restricted registration - show details
Number of participants limited to 25.
W3 credits2GJ. Lienert
AbstractThis introduction to "Multi-Criteria Decision Analysis" (MCDA) combines prescriptive Decision Theory (MAVT, MAUT) with practical application and computer-based decision support systems. Aspects of descriptive Decision Theory (psychology) are introduced. Participants apply the theory to an environmental decision problem (group work).
ObjectiveThe main objective is to learn the theory of "Multi-Attribute Value Theory" (MAVT) and "Multi-Attribute Utility Theory" (MAUT) and apply it step-by-step using an environmental decision problem. The participants learn how to structure complex decision problems and break them down into manageable parts. An important aim is to integrate the goals and preferences of different decision makers. The participants will practice how to elicit subjective (personal) preferences from decision makers with structured interviews. They should have an understanding of people's limitations to decision-making, based on insights from descriptive Decision Theory. They will use formal computer-based tools to integrate "objective / scientific" data with "subjective / personal" preferences to find consensus solutions that are acceptable to different decision makers.
ContentGENERAL DESCRIPTION
Multi-Criteria Decision Analysis is an umbrella term for a set of methods to structure, formalize, and analyze complex decision problems involving multiple objectives (aims, criteria), many different alternatives (options, choices), and different actors which may have conflicting preferences. Uncertainty (e.g., of the future or of environmental data) adds to the complexity of environmental decisions. MCDA helps to make decision problems more transparent and guides decision makers into making rational choices. Today, MCDA-methods are being applied in many complex decision situations. This class is designed for participants interested in transdisciplinary approaches that help to better understand real-world decision problems and that contribute to finding sustainable solutions. The course focuses on "Multi-Attribute Value Theory" (MAVT) and "Multi-Attribute Utility Theory" (MAUT). It also gives a short introduction to behavioral Decision Theory, the psychological field of decision-making.

STRUCTURE
The course consists of a combination of lectures, exercises in the class, exercises in small groups, reading, and one mandatory exam. Some exercises are computer assisted, applying MCDA software. The participants will choose an environmental case study to work on in small groups throughout the semester. Additional reading from the textbook Eisenführ et al. (2010) is required.

GRADING
There will be one written examination at the end of the course that covers the important theory (50 % of final grade). The group work consists of two written reports (50 %).
Lecture notesNo script (see below)
LiteratureThe course is based on: Eisenführ, Franz; Weber, Martin; and Langer, Thomas (2010) Rational Decision Making. 1st edition, 447 p., Springer Verlag, ISBN 978-3-642-02850-2.

Additional reading material will be recommended during the course. Lecture slides will be made available for download.
Prerequisites / NoticeThe course requires some understanding of (basic) mathematics. The "formal" parts are not too complicated and we will guide students through the mathematical applications and use of software.

The course is limited to 25 participants (first come, first served).
103-0448-01LTransformation of Urban Landscapes
Only for masters students, otherwise a special permit of the lecturer is necessary.
W3 credits2GJ. Van Wezemael, A. Gonzalez Martinez
AbstractThe lecture course addresses the transformation of urban landscapes towards sustainable inward development. The course reconnects two largely separated complexity approaches in «spatial planning» and «urban sciences» as a basic framework to look at a number of spatial systems considering economic, political, and cultural factors. Focus lies on participation and interaction of students in groups.
Objective- Understand cities as complex adaptive systems
- Understand planning in a complex context and planning competitions as decision-making
- Seeing cities through big data and understand (Urban) Governance as self-organization
- Learn Design-Thinking methods for solving problems of inward development
- Practice presentation skills
- Practice argumentation and reflection skills by writing critiques
- Practice writing skills in a small project
- Practice teamwork
ContentStarting point and red thread of the lecture course is the transformation of urban landscapes as we can see for example across the Swiss Mittelland - but in fact also globally. The lecture course presents a theoretical foundation to see cities as complex systems. On this basis it addresses practical questions as well as the complex interplay of economic, political or spatial systems.

While cities and their planning were always complex the new era of globalization exposed and brought to the fore this complexity. It created a situation that the complexity of cities can no longer be ignored. The reason behind this is the networking of hitherto rather isolated places and systems across scales on the basis of Information and Communication Technologies. «Parts» of the world still look pretty much the same but we have networked them and made them strongly interdependent. This networking fuels processes of self-organization. In this view regions emerge from a multitude of relational networks of varying geographical reach and they display intrinsic timescales at which problems develop. In such a context, an increasing number of planning problems remain unaffected by either «command-and-control» approaches or instruments of spatial development that are one-sidedly infrastructure- or land-use orientated. In fact, they urge for novel, more open and more bottom-up assembling modes of governance and a «smart» focus on how space is actually used. Thus, in order to be effective, spatial planning and governance must be reconceptualised based on a complexity understanding of cities and regions, considering self-organizing and participatory approaches and the increasingly available wealth of data.
LiteratureA reader with original papers will be provided via the ILIAS system.
Prerequisites / NoticeOnly for masters students, otherwise a special permit of the lecturer is necessary.
  •  Page  1  of  3 Next page Last page     All