Search result: Catalogue data in Spring Semester 2020
Biology Bachelor | ||||||
1. Year (First Year), 2. Semester | ||||||
Compulsory Subjects First Year Examinations | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|
401-0292-00L | Mathematics II | O | 5 credits | 3V + 2U | A. Caspar | |
Abstract | Mathematics I/II is an introduction to one- and multidimensional calculus and linear algebra emphasizing on applications. | |||||
Learning objective | Students understand mathematics as a language for modelling and as a tool for solving practical problems in natural sciences. Students can analyze models, describe solutions qualitatively or calculate them explicitly if need be. They can solve examples as well as their practical applications manually and using computer algebra systems. | |||||
Content | ## Komplexe Zahlen ## - Kartesische und Polar-Darstellung - Rechnen mit komplexen Zahlen - Lösungen algebraischer Gleichungen ## Lineare Algebra - Fortsetzung ## - Komplexe Vektoren und Matrizen - Weitere Arithmetische Aspekte - LGS und Gauss-Verfahren ## Lineare DGL 2. Ordnung und Systeme 1. Ordnung ## - Lösen mit Eigenwerten/-vektoren. - Qualitative Lösungsverhalten - Ebene und Räumliche (Lösungs-)Kurven ## Integral- und Differentialrechnung (II) ## - Hauptsatz der Differential/Integralrechnung - Uneigentliche Integrale - Anwendungen - Gebiets- und Volumenintegral - - - - - - - - - - - - - - - - - - - - - - Partielle Funktionen und Ableitungen - Extrema - Tangentialebene - Verallgemeinerte Kettenregel ## Vektoranalysis ## - Potentialtheorie - Formel von Green - Divergenz und Ebener Satz von Gauss - Oberflächenintegral, Fluss - Satz von Gauss im Raum. | |||||
Lecture notes | In Ergänzung zu den Vorlesungskapiteln der Lehrveranstaltungen fassen wir wichtige Sachverhalte, Formeln und weitere Ausführungen jeweils in einem Vademecum zusammen. Dabei gilt: * Die Skripte ersetzen nicht die Vorlesung und/oder die Übungen! * Ohne den Besuch der Lehrveranstaltungen verlieren die Ausführungen ihren Mehrwert. * Details entwickeln wir in den Vorlesungen und den Übungen, um die hier bestehenden Lücken zu schliessen. * Prüfungsrelevant ist, was wir in der Vorlesung und in den Übungen behandeln. | |||||
Literature | Siehe auch Lernmaterial > Literatur **Th. Wihler** Mathematik für Naturwissenschaften, 2 Bände: Einführung in die Analysis, Einführung in die Lineare Algebra; Haupt-Verlag Bern, UTB. **H. H. Storrer** Einführung in die mathematische Behandlung der Naturwissenschaften I; Birkhäuser. Via ETHZ-Bibliothek: <https://link.springer.com/book/10.1007/978-3-0348-8598-0> **Ch. Blatter** Lineare Algebra; VDF auch als [pdf]<https://people.math.ethz.ch/~blatter/linalg.pdf> | |||||
Prerequisites / Notice | ## Voraussetzungen ## Mathematik I <Link> ## Übungen und Prüfungen ## + Die Übungsaufgaben (inkl. Multiple-Choice) sind ein wichtiger Bestandteil der Lehrveranstaltung. + Es wird erwartet, dass Sie mindestens 75 % der wöchentlichen Serien bearbeiten und zur Korrektur einreichen. + Der Prüfungsstoff ist eine Auswahl von Themen aus Vorlesung und Übungen. Für eine erfolgreiche Prüfung ist die konzentrierte Bearbeitung der Aufgaben unerlässlich. ## Einschreibung in die Übungen ## Die Einschreibung in die Übungsgruppen erfolgt online. ## Zugang Übungsserien ## Erfolgt auch online. | |||||
551-0106-00L | Fundamentals of Biology IB | O | 5 credits | 5G | A. Wutz, J. Alexander, O. Y. Martin, E. B. Truernit, S. Wielgoss, S. C. Zeeman | |
Abstract | This course is an introduction into the basic principles of evolution, diversity, animal/plant form and function, and ecology. | |||||
Learning objective | Introduction into aspects of modern biology and fundamental biological concepts. | |||||
Content | The course is divided into distinct chapters 1. Mechanisms of evolution. 2. The evolutionary history of biological diversity (bacteria and archea, protists, plants and animals). 3. Plant form and function (growth and development, nutrient and resource acquisition, reproduction and environmental responses). 4. Animal form and function (nutrition, immune system, hormones, reproduction, nervous system and behaviour). 5. Ecology (population ecology, community ecology, ecosystems and conservation ecology). | |||||
Lecture notes | No script | |||||
Literature | This course is based on the textbook 'Biology' (Campbell, Reece, 9th edition). The structure of the course follows that of the book. It is recommended to purchase the English version. | |||||
Prerequisites / Notice | Part of the contents of the book need to be learned through independent study. | |||||
529-1012-00L | Organic Chemistry II (for Students of Biology, Pharmaceutical Sci., and Health Sci. & Tech.) | O | 5 credits | 5G | C. Thilgen | |
Abstract | The relationship between structure and reactivity of organic molecules is elaborated by studying the mechanisms of the fundamental types of organic reactions. A basic synthesis repertoire is acquired. | |||||
Learning objective | Understanding the mechanisms of the fundamental types of organic reactions. Particular emphasis is placed on the relationship between structure and reactivity. A basic repertoire for the synthesis of small organic molecules is acquired. Weekly problem solving lessons provide a deeper understanding of the concepts presented during the lecture. | |||||
Content | The basic reactions of organic chemistry and their mechanisms. Chemistry of the most important functional groups, the carbonyl group in particular. For details, see German version. | |||||
Lecture notes | Printed or electronic lecture notes are available. Problem sets, answer keys, and other course materials can be downloaded from the Moodle course "Organic Chemistry II" of the current semester (https://moodle-app2.let.ethz.ch). | |||||
Literature | No set textbooks. Optional texts will be proposed at the beginning of the class and in the lecture notes (cf. course 529-1011-00L Organic Chemistry I). | |||||
Prerequisites / Notice | Attendance of the course 529-1011-00, "Organic Chemistry I for Biology/Pharmaceutical Sciences/HST". | |||||
402-0072-00L | Physics | O | 5 credits | 5V + 2U | T. M. Ihn | |
Abstract | Introduction to the concepts and tools in physics with the help of demonstration experiments: mechanics, statistical mechanics, electromagnetism and optics. | |||||
Learning objective | The concepts and tools in physics, as well as the methods of an experimental science are taught. The student should learn to identify, communicate and solve physical problems in his/her own field of science. | |||||
Content | 1. Fundamental concepts of natural sciences I. MECHANICS 2. Motion in one dimension 3. Motion in two and three dimensions 4. Newton's laws 5. Applications of Newton's laws 6. Forces 7. Work and energy, power, energy conservation 8. Momentum conservation, collisions 9. Angular momentum conservation II. STATISTICAL MECHANICS 10. Concentration and density 11. Pressure and work 12. Entropy, Second Law of Thermodynamics 13. Temperature and heat 14. First Law of Thermodynamics 15. The Boltzmann-Factor III. ELECTROMAGNETISM 16. Geometrical optics 17. Light as an electromagnetic wave 18. Quantum aspects of light | |||||
Lecture notes | T. Ihn: Physics for Students in Biology and Pharmazeutical Sciences (unpublished lecture notes) | |||||
Literature | The lecture contains elements of: Paul A. Tipler and Gene P. Mosca, "Physik für Wissenschaftler und Ingenieure", Springer Spektrum. Feynman, Leighton, Sands, "The Feynman Lectures on Physics", Volume I (http://www.feynmanlectures.caltech.edu/) Ruth Chabay and Bruce Sherwood, "Matter and Interactions" (Wiley) | |||||
Prerequisites / Notice | Prerequisites: Mathematics I | |||||
401-0643-00L | Statistics I | O | 3 credits | 2V + 1U | M. Kalisch | |
Abstract | Introduction to basic methods and fundamental concepts of statistics and probability theory for non-mathematicians. The concepts are presented on the basis of some descriptive examples. | |||||
Learning objective | Grundverständnis für die Gesetze des Zufalls und des Denkens in Wahrscheinlichkeiten. Kenntnis von Methoden zur Darstellung von Daten und zu ihrer quantitativen Interpretation unter Berücksichtigung der statistischen Unsicherheit. | |||||
Content | Modelle und Statistik für Zähldaten: Diskrete Wahrscheinlichkeitsmodelle, Binomial-Verteilung, Tests und Vertrauensintervalle für eine Wahrscheinlichkeit, Poisson-Verteilung und deren Statistik, weitere Verteilungen. Modelle und Statistik für Messdaten: Beschreibende Statistik, Zufallsvariablen mit Dichten, t-Test und Wilcoxon-Test und zugehörige Vertrauensintervalle. Regression: Das Modell der linearen Regression, Tests und Vertrauensintervalle, Residuenanalyse. | |||||
Lecture notes | Es steht ein kurzes Skript zur Verfügung. | |||||
Literature | - W. A. Stahel, Statistische Datenanalyse: Eine Einführung für Naturwissenschaftler, 5. Aufl., Vieweg, Braunschweig/Wiesbaden, 2007 | |||||
Prerequisites / Notice | Voraussetzungen: Grundlegende Mathematik-Kenntnisse wie sie im ersten Semester erworben werden. | |||||
First Year Laboratory Courses | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
551-0102-01L | Fundamentals of Biology I Registrations via myStudies until 29.1.2020 at the latest. Subsequent registrations will not be considered. | O | 6 credits | 8P | M. Gstaiger, M. Kopf, R. Kroschewski, M. Künzler, S. L. Masneuf, D. Ramseier, M. Stoffel, E. B. Truernit, A. Wutz | |
Abstract | This 1st year Laboratory course introduces the student to the entire range of classical and modern molecular biosciences. During this course (Praktikum GL BioI) the students will do three praktikum days in: - Biochemistry - Cell Biology I - Microbiology - Plant Anantomy & Ecology (total of 12 experiments) Each experiment takes one full day. | |||||
Learning objective | Introduction to theoretical and experimental biology General Praktikum-information and course material can be obtained from Moodle The general Praktikum information (Assignment list, Instructions and Schedule & Performance Sheet) will also be sent to the students directly (E-mail). | |||||
Content | The class is divided into four blocks: Biochemistry, Microbiology, Plant biology & Ecology and Cell Biology I. BIOCHEMISTRY: - TAQ Analysis (part 1): Protein purification - TAQ Analysis (part 2): SDS-Gelelektrophoresis - TAQ Analysis (part 3): Activity test of the purified protein MICROBIOLOGY: Day 1: Basics for the work with microorganisms & Isolation of microorganisms from the environment Day 2: Morphology and diagnostics of bacteria & Antimicrobial agents Day 3: Morphology of fungi & Microbial physiology and interactions PLANT BIOLOGY & ECOLOGY - Microscopy and plant cell anatomy - Plant organ anatomy and gene expression - Ecology CELL BIOLOGY I: - Anatomy of mouse & Blood cell determination - Histology - Chromosome preparation and analysis | |||||
Lecture notes | Laboratory manuals BIOCHEMISTRY: - The protocols can be downloaded from: Moodle MICROBIOLOGY: - The protocols can be found from: Moodle - You HAVE TO print the pdf-file, which is also used as the lab manual during the experiments. Therefore, you have to have the Script always with you, when doing the experiments in Microbiology. PLANT BIOLOGY & ECOLOGY: - The protocols can be found from: Moodle CELL BIOLOGY I: - The handouts of the experiments entitled "Histology" will be provided - The protocols of "Anatomy of mouse & Blood cell determination" and "Chromosome preparation and analysis" can be found from: Moodle | |||||
Literature | None | |||||
Prerequisites / Notice | PLEASE NOTE THE FOLLOWING RULES Your attendance is obligatory and you have to attend all 12 Praktikum days of GL BioI. Absences are only acceptable if you are able to provide a Doctor’s certificate. The original Dr's certificate has to be given to Dr. M. Gstaiger (HPM F43) within five days of the absence of the Praktikum day. If there will be any exceptional or important situations then you should directly contact the Director of Studies of D-Biol, who will decide if you are allowed to miss a Praktikum day or not. HIGHLY IMPORTANT!! 1. Due to the increased number of students, the official Praktikum registration has to be done, using myStudies, preferably at the end of HS19 but not later than Thursday January 30, 2020. 2. Later registration is NOT possible and can NOT be accepted! 3. The course registration for FS2020 is usually possible at the end of fall semester 2019 and you will obtain an E-mail from the Rectorate when the course registration using myStudies is possible. Students can register for a practice group via myStudies. As soon as the course unit is registered in myStudies, a text box appears indicating that a group can be selected. Accordingly, students can select a group in the next step. If more than 240 students register, the surplus students will be placed on a waiting list and then allocated by the course responsible. Extra Praktikum days have to be organized if more than 220 - 240 students will attend the Praktikum. The group division is random and the reserved Extra Praktikum days are: 3.6 / 4.6 / 5.6 The Praktikum GL BioI will take place during the following days and therefore, you have to make sure already now that you will not have any other activities / commitments during these days: PRAKTIKUM DAYS FS20 (Thursdays): 20.2. / 27.2. / 5.3. / 12.3. / 19.3. / 26.3. / 2.4. / 23.4. / 30.4. / 7.5. / 14.5. / 28.5 No Praktikum during the Easter vacation: 9.4.-17.4. 2020 EXTRA PRAKTIKUM DAYS (if necessary) 3.6 / 4.6 / 5.6 | |||||
2. Year, 4. Semester | ||||||
Core Courses | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
529-1024-00L | Physical Chemistry II (for Biology and Pharmacy) | O | 4 credits | 2V + 1U | R. Riek | |
Abstract | Kinetics of chemical and biochemical reactions, in particular catalyzed reactions. Surface- and transport-phenomena, characterization of open systems. | |||||
Learning objective | Knowledge on the basics of time dependent process in chemical and biological systems. | |||||
Content | Grundbegriffe: Stofftransport, Transport in kontinuierlichen Systemen, Wärmeleitung, Viskosität von Gasen, Laminare Strömung durch Rohre, Ionenleitfähigkeit, Elektrisch geladene Grenzflächen, Elektrophorese, Sedimentation im Zentrifugalfeld, Eigenschaften der Plasmamembran, Transport durch Membranen, Membranpotentiale Reaktionsgeschwindigkeitsgesetze, Elementarreaktionen und zusammengesetzte Reaktionen, Molekularität, Reaktionsordnung, Experimentelle Methoden der Reaktionskinetik. Einfache Theorie chemischer Reaktionen: Temperaturabhängigkeit der Gleichgewichtskonstante und Arrheniusgleichung, Stosstheorie, Reaktionsquerschnitte, Theorie des Übergangszustandes. Zusammengesetzte Reaktionen: Reaktionsmechanismen und komplexe kinetische Systeme, Näherungsverfahren. Enzymkinetik. Kinetik geladener Teilchen. Diffusion und diffusionskontrollierte Reaktionen. | |||||
Lecture notes | Handouts werden in der Vorlesung verteilt | |||||
Literature | Adam, G., Läuger, P., Stark, G., 2003: Physikalische Chemie und Biophysik, 4. Aufl., Springer Verlag, Berlin. | |||||
Prerequisites / Notice | Voraussetzungen: Physikalische Chemie I | |||||
551-0104-00L | Fundamentals of Biology II Registrations via myStudies until 29.1.2020 at the latest. Subsequent registrations will not be considered. | O | 8 credits | 8P | M. Gstaiger, E. Dultz, C. H. Giese, W. Kovacs, D. Santelia, H. Stocker, U. Suter, S. Werner | |
Abstract | This introductory Laboratory course introduces the student to the entire range of classical and modern molecular biosciences. In the second year (Praktikum GL Bio II) the students will perform three praktikum days in: - Molecular Biology - Plant Physiology - Genetics and - Cell Biology II. (total of 12 experiments) Each experiment takes one full day. | |||||
Learning objective | Introduction to theoretical and experimental biology Moodle www-link for general Praktikum-information and course material: Moodle The general Praktikum information (Assignment list, Instructions and Schedule & Performance Sheet) will also be sent to the students directly (E-mail). | |||||
Content | The class is divided into four blocks: Cell Biology II, Genetics, Molecular Biology and Plant Physiology. One block lasts three weeks. CELL BIOLOGY II: - Cells: Cell types & staining methods, cell fusion & cell motility, - Tissue and development: histology of mice embryos & embryogenesis - Repair mechanisms: DNA repair & wound healing, GENETICS: - Yeast genetics - Drosophila genetics - Human genetics MOLECULAR BIOLOGY - Molecular biology & protein crystallization - Enzyme kinetics - Redox potential & stability of a protein PLANT PHYSIOLOGY: - Plants and light - Phytohormones and other growth factors - Molecular biology of systemic gene silencing - Literature and presentations The students will also prepare short presentations (approx. 10 min) of the various topics within this course. | |||||
Lecture notes | Laboratory manuals CELL BIOLOGY II - The protocols can be downloaded from: Moodle MOLECULAR BIOLOGY: - The protocols can be found from: Moodle PLANT PHYSIOLOGY - The protocols can be found from: Moodle GENETICS - The protocols can be found from: Moodle | |||||
Prerequisites / Notice | THE PRAKTIKUM RULES: Your attendance is obligatory and you have to attend all 12 Praktikum days. Absences are only acceptable if you are able to provide a Doctor’s certificate. The original Dr's certificate has to be given to Dr. M. Gstaiger (HPM F43) within five days of the absence of the Praktikum day. If there will be any exceptional or important situations then you should directly contact the Director of Studies of D-Biol, who will decide if you are allowed to miss a Praktikum day or not. HIGHLY IMPORTANT!! 1. Due to the increased number of students, the official Praktikum registration has to be done, using myStudies, preferably at the end of HS18 but not later than Wednesday January 30, 2020. 2. Later registration is NOT possible and can NOT be accepted! 3. The course registration for FS20 is usually possible at the end of HS18 and you will obtain an E-mail from the Rectorate when the course registration using myStudies is possible. Students can register for a practice group via myStudies. As soon as the course unit is registered in myStudies, a text box appears indicating that a group can be selected. Accordingly, students can select a group in the next step. If more than 180 students register, the surplus students will be placed on a waiting list and then allocated by the course responsible. The Praktikum GL BioII FS20 will take place during the following days and therefore, you have to make sure already now that you do not have any other activities & commitments during these days: PRAKTIKUM DAYS DURING FS19 (Fridays): 21.2. / 28.2. / 6.3. / 13.3. / 20.3. / 27.3. / 3.4. / 24.4. / 8.5. / 15.5. / 22.5. / 29.5 No Praktikum during the Easter break: 9.4.-17.4. 2020 | |||||
551-1298-00L | Genetics, Genomics, Bioinformatics | O | 4 credits | 2V + 2U | E. Hafen, C. Beyer, B. Christen, U. K. Genick, J. Piel, R. Schlapbach, G. Schwank, S. Sunagawa, K. Weis, A. Wutz | |
Abstract | The course provides the basis of modern genetics, genomics and bioinformatics. A special focus is placed on the use of these tools for the understanding of biological processes in bacteria, model organisms and humans. The unit uses the principle of blended learning consisting of self-study modules in Moodle, tasks and input lectures by experts from the department. | |||||
Learning objective | At the end of this course you know the most important genetic tools in different organisms. You can use the essential methods in bioinformatics by using online tools. You know the advantages and disadvantages of various model organisms to understand biological processes. You know the various mutagenesis methods and other tools to disrupt gene function and can discuss their merits and drawbacks. You are aware of the difficulties in choosing a phenotype for selection in a mutagenesis experiment. Finally, you can describe how you would study a specific biological process by choosing a model organism and the appropriate genetic or genomic tools. | |||||
Content | The appearance and function of an organism (phenotype) is determined by the interplay between its genome (genotype) and the environment: Genotype + environment = phenotype. Understanding these interactions to the point where we can ultimately predict the phenotype from knowledge of the genotype and environmental factors is one oft the great challenges of biology. In the course Bio IA you learnt about the composition and function of the genome and how it is inherited. The goal of this course is that you learn how genetic, genomic and bioinformatics methods are used to understand biological processes (the connection between genotype and phenotype). You will start by refreshing and deepening your knowledge of the basic principles of genetics and genomics in an interactive learning modules on the Moodle platform. This is followed by an introduction of the basic tools of bioinformatics and genomic analysis. After you have mastered the basic principles you will learn how to study biological processes either by inactivating specific genes or by randomly mutagenizing the entire genome. You will be introduced to different model organisms (bacteria, yeast, Drosophila) and humans. At the end of this first part of the course, you will test your knowledge by working with a group of fellow students to design your own genetic study. Conventional genetic methods rely on the alteration of the function of single genes and on the observation of the effect on the organism (phenotype). Based on the observed phenotype one deduces the normal function of the gene. However, this is a strong simplification. Even if environmental factors are controlled, phenotypes are very rarely controlled by a single gene. It is therefore important to understand the influence of the entire genome in conjunction with environmental factors on a given phenotype (e.g. human disease). Modern methods in genomics now permit first approaches in this direction. Therefore, the focus of the second part of the unit is on genomics methods. You learn, how the influence of the entire genome on a specific phenotype is detected and what challenges are involved in the analysis and the interpretation of the results. We will examine these methods in model organisms and humans. You will also learn how the genome of cancer cells changes under the constant selection for these cells to survive and how this genome analysis provides new insights into diagnosis and therapy. This course is based on active learning. Each week consists of a learning unit with clearly defined learning goals. In the first two hours you will learn the basics from texts, videos and questionnaires on the Moodle platform. In the third lecture an expert on the topic of the week (e.g. genetic screens in yeast) from the department will give an input lecture that builds on the basic knowledge that you acquired. In the fourth lecture you will discuss the tests and topics of the week with the expert. During the semester you will have access to assistants and lecturers via the Moodle online forum. | |||||
Lecture notes | The learning material and slides of the input lectures are available on Moodle. There you will also find further information (articles, links, videos). | |||||
Literature | All texts and references will be available on Moodle. To follow the most recent developments in this rapidly evolving field follow the following experts on Twitter: @dgmacarthur @EricTopol und/oder @ehafen | |||||
Prerequisites / Notice | The course builds on the course Bio IA, in particular on that course's content regarding genetics and genomics. The course is based on self-learning units on Moodle, input lectures by experts from D-BIOL and exercises. | |||||
551-0108-00L | Fundamentals of Biology II: Plant Biology | O | 2 credits | 2V | O. Voinnet, W. Gruissem, S. C. Zeeman | |
Abstract | Water balance, assimilation, transport in plants; developmental biology, stress physiology. | |||||
Learning objective | Water balance, assimilation, transport in plants; developmental biology, stress physiology. | |||||
Lecture notes | Plant Biology: Handouts of the powerpoint presentation will be distributed. It can also be viewed in a password-protected web link. | |||||
Literature | Smith, A.M., et al.: Plant Biology, Garland Science, New York, Oxford, 2010 | |||||
551-0110-00L | Fundamentals of Biology II: Microbiology | O | 2 credits | 2V | J. Vorholt-Zambelli, W.‑D. Hardt, J. Piel | |
Abstract | Bacterial cell biology, molecular genetics, gene regulation, growth physiology, metabolism (Bacteria and Archaea), natural products, microbial interactions | |||||
Learning objective | Basic principles of cell structure, growth physiology, energy metabolism, gene expression and regulation. Biodiversity of Bacteria and Archaea. Phylogeny and evolution. | |||||
Content | Bacterial cell biology, molecular genetics, gene regulation, growth physiology, metabolism (Bacteria and Archaea), natural products, microbial interactions | |||||
Literature | Brock, Biology of Microorganisms (Madigan, M.T. and Martinko, J.M., eds.), 14th ed., Pearson Prentice Hall, 2015 | |||||
Elective Blocks | ||||||
Biodiversity | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
551-1174-00L | Systems Biology | O | 4 credits | 2V + 2U | U. Sauer, K. M. Borgwardt, J. Stelling, N. Zamboni | |
Abstract | The course teaches computational methods and first hands-on applications by starting from biological problems/phenomena that students in the 4th semester are somewhat familiar with. During the exercises, students will obtain first experience with programming their own analyses/models for data analysis/interpretation. | |||||
Learning objective | We will teach little if any novel biological knowledge or analysis methods, but focus on training the ability of use existing knowledge (for example from enzyme kinetics, regulatory mechanisms or analytical methods) to understand biological problems that arise when considering molecular elements in their context and to translate some of these problems into a form that can be solved by computational methods. Specific goals are: - understand the limitations of intuitive reasoning - obtain a first overview of computational approaches in systems biology - train ability to translate biological problems into computational problems - solve practical problems by programming with MATLAB - make first experiences in computational interpretation of biological data - understand typical abstractions in modeling molecular systems | |||||
Content | During the first 7 weeks, the will focus on mechanistic modeling. Starting from simple enzyme kinetics, we will move through the dynamics of small pathways that also include regulation and end with flux balance analysis of a medium size metabolic network. During the second 7 weeks, the focus will shift to the analysis of larger data sets, such as metabolomics and transcriptomics that are often generated in biology. Here we will go through multivariate statistical methods that include clustering and principal component analysis, ending with first methods to learn networks from data. | |||||
Lecture notes | Scripts to prepare the lectures will be provided via Moodle | |||||
Literature | The course is not taught by a particular book, but two books are suggested for further reading: - Systems Biology (Klipp, Herwig, Kowald, Wierling und Lehrach) Wiley-VCH 2009 - A First Course in Systems Biology (Eberhardt O. Voight) Garland Science 2012 | |||||
376-0152-00L | Anatomy and Physiology II | O | 5 credits | 4V | M. Ristow, K. De Bock, M. Kopf, L. Slomianka, C. Spengler | |
Abstract | Basic knowledge of the anatomy and physiology of the gastrointestinal tract, endocrine organs, urinary system and the reproductive system. Knowlewdge of the basic mechanisms of pathobiology. Study of all human tissues and selected organs by examining slides under the light microscope. | |||||
Learning objective | Foundations of human anatomy and physiology and basics of clinical pathophysiology | |||||
Content | Short overview of human anatomy, physiology and general pathology. 3rd semester: Principles of histology and embryology. Anatomy and physiology: nervous system, muscle, sensory organs, circulatory system, respiratory system. 4rd semester: Anatomy and physiology: gastrointestinal tract, endocrine system, metabolism and thermoregulation, integumentary system, blood and immune system, urinary system, circadian rhythm, reproductive system, pregnancy and birth. | |||||
Literature | Anatomie: Martini, Timmons, Tallitsch, "Anatomie", Pearson; oder Schiebler, Korf, "Anatomie", Steinkopff / Springer; oder Spornitz, "Anatomie und Physiologie, Lehrbuch und Atlas für Pflege-und Gesundheitsfachberufe", Springer Physiologie: Thews/Mutschler/Vaupel: Anatomie, Physiologie, Pathophysiologie des Menschen, Wissenschaftliche Verlagsgesellschaft, Stuttgart oder Schmidt/Lang/Thews: Physiologie des Menschen, Springer-Verlag, Heidelberg | |||||
Prerequisites / Notice | Der Besuch der Anatomie und Physiologie I - Vorlesung ist Voraussetzung, da die Anatomie und Physiologie II - Vorlesung auf dem Wissen der im vorangegangenen Semester gelesenen Anatomie und Physiologie I - Vorlesung aufbaut. | |||||
701-0360-00L | Systematic Biology: Plants | O | 5 credits | 2V + 3P | A. Leuchtmann | |
Abstract | The lecture provides an overview of the diversity of ferns and seed-plants. The fundamentals of systematics are given considering morphological, phylogenetic and ecological aspects. Regarding plant species, emphasis is laid on the flora of Switzerland, but also examples of pharmaceutical relevance and crop plants will be included. | |||||
Learning objective | Students know: - the fundamentals of plant systematics - the higher-level plant groups based on morphological and biological characteristics - selected families of flowering plants - selected species and their ecology, with special focus on the flora of Switzerland - examples of medicinal and crop plants - ecological factors of sites and the most important vegetation types of the lowlands. | |||||
Content | Die Vorlesung gibt einen Überblick über Moose, Farne, Gymnospermen und Angiospermen. Ausgewählte Familien der Angiospermen werden ausführlich behandelt. Weitere Themen sind Grundlagen der Pflanzensystematik, Generationswechsel, phylogenetische Stammbäume, morphologische Begriffe, sowie Lebensweise und Ökologie der Pflanzen. Anhand ausgewählter Beispiele wird auf die Bedeutung der Pflanzen als Arznei-, Zeiger- und Nutzpflanzen eingegangen. Zudem wird eine Übersicht über Standorteigenschaften und Vegetation des Tieflandes in der Schweiz gegeben. Im praktischen Teil lernen die Studierenden Merkmale von Blütenpflanzen zu analysieren und üben das Bestimmen von Pflanzenarten. Auf Exkursionen werden Artkenntnisse vermittelt und ein Einblick gegeben in Flora und Vegetation ausgewählter Standorte im Schweizer Mittelland, wobei auch einheimische Arzneipflanzen berücksichtigt werden. | |||||
Literature | Baltisberger et al., Systematische Botanik. Einheimische Farn- und Samenpflanzen. vdf Hochschulverlag AG an der ETH Zürich (4. Aufl. 2013) Hess et al., Bestimmunsschlüssel zur Flora der Schweiz. Springer, Basel (7. Aufl. 2015) Baltisberger, Conradin, Frey & Rudow, 2016: eBot6. Internetapplikation. Für Studierende frei zugänglich unter http://www.balti.ethz.ch/tiki-index.php?page=eBot6. | |||||
Prerequisites / Notice | Für Studierende der Pharmazeutischen Wissenschaften Bsc obligatorisch, für Studierende Biologie Bsc und Umweltnaturwissenschaften Bsc mit Vertiefungen in Ökologie und Evolution (Biologie), Wald und Landschaft oder Umweltbiologie besonders empfohlen. | |||||
701-0264-01L | Supplementary Course Systematic Botany Does not take place this semester. Prerequisite: successful participation in 701-0360-00L Systematic Biology: Plants. It is recommended to enroll for both lectures in the same semester. | E- | 1 credit | 2P | A. Leuchtmann | |
Abstract | Botanical excursions to Lower Engiadina providing extended systematic-botanical knowledge | |||||
Learning objective | Participants know characters of important plant families and are able to assign species accordingly. They have gained extended knowledge of plant species, particularly of those relevant for the exam, and have received insight into flora and vegetation of the Lower Engiadina valley. | |||||
Content | Exkursion in der montanen Stufe bei Klosters am ersten Tag, zwei weitere Exkursionen im Unterengadin. Vertiefung der systematisch-taxonomischen Kenntnisse und Einblick in Flora und Vegetation eines zentralalpinen Trockentals. Gruppenarbeit mit ausgewählten, neuen Pflanzenarten. | |||||
Literature | Baltisberger et al., Systematische Botanik. Einheimische Farn- und Samenpflanzen. vdf Hochschulverlag AG an der ETH Zürich (4. Aufl. 2013) Hess et al. 2015. Bestimmunsschlüssel zur Flora der Schweiz. 7. Aufl., Springer, Basel. | |||||
Prerequisites / Notice | Der Kurs richtet sich an Studierende Biologie Bsc und Umweltnaturwissenschaften Bsc; auch Studierende Pharmazeutische Wissenschaften Bsc sind willkommen. Der Besuch von "701-0360-00L Systematische Biologie: Pflanzen" wird vorausgesetzt, da der Kurs darauf aufbaut. Diese Lehrveranstaltung ist auf maximal 50 Teilnehmende beschränkt. Schriftliche Anmeldungen erforderlich, die nach Reihenfolge des Eingangs berücksichtigt werden. Kosten für Verpflegung und Unterkunft in Mehrbettzimmern (2 Nächte) müssen von den Teilnehmern übernommen werden (Fr. 80.-). | |||||
701-0245-00L | Introduction to Evolutionary Biology | O | 2 credits | 2V | G. Velicer, S. Wielgoss | |
Abstract | This course introduces important questions about the evolutionary processes involved in the generation and maintenance of biological diversity across all domains of life and how evolutionary science investigates these questions. | |||||
Learning objective | This course introduces important questions about the evolutionary processes involved in the generation and maintenance of biological diversity across all domains of life and how evolutionary science investigates these questions. The topics covered range from different forms of selection, phylogenetic analysis, population genetics, life history theory, the evolution of sex, social evolution to human evolution. These topics are important for the understanding of a number of evolutionary problems in the basic and applied sciences. | |||||
Content | Topics likely to be covered in this course include research methods in evolutionary biology, adaptation, evolution of sex, evolutionary transitions, human evolution, infectious disease evolution, life history evolution, macroevolution, mechanisms of evolution, phylogenetic analysis, population dynamics, population genetics, social evolution, speciation and types of selection. | |||||
Literature | Textbook: Evolutionary Analysis Scott Freeman and Jon Herron 5th Edition, English. | |||||
Prerequisites / Notice | The exam is based on lecture and textbook. | |||||
Cellular and Molecular Biology | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
551-1174-00L | Systems Biology | O | 4 credits | 2V + 2U | U. Sauer, K. M. Borgwardt, J. Stelling, N. Zamboni | |
Abstract | The course teaches computational methods and first hands-on applications by starting from biological problems/phenomena that students in the 4th semester are somewhat familiar with. During the exercises, students will obtain first experience with programming their own analyses/models for data analysis/interpretation. | |||||
Learning objective | We will teach little if any novel biological knowledge or analysis methods, but focus on training the ability of use existing knowledge (for example from enzyme kinetics, regulatory mechanisms or analytical methods) to understand biological problems that arise when considering molecular elements in their context and to translate some of these problems into a form that can be solved by computational methods. Specific goals are: - understand the limitations of intuitive reasoning - obtain a first overview of computational approaches in systems biology - train ability to translate biological problems into computational problems - solve practical problems by programming with MATLAB - make first experiences in computational interpretation of biological data - understand typical abstractions in modeling molecular systems | |||||
Content | During the first 7 weeks, the will focus on mechanistic modeling. Starting from simple enzyme kinetics, we will move through the dynamics of small pathways that also include regulation and end with flux balance analysis of a medium size metabolic network. During the second 7 weeks, the focus will shift to the analysis of larger data sets, such as metabolomics and transcriptomics that are often generated in biology. Here we will go through multivariate statistical methods that include clustering and principal component analysis, ending with first methods to learn networks from data. | |||||
Lecture notes | Scripts to prepare the lectures will be provided via Moodle | |||||
Literature | The course is not taught by a particular book, but two books are suggested for further reading: - Systems Biology (Klipp, Herwig, Kowald, Wierling und Lehrach) Wiley-VCH 2009 - A First Course in Systems Biology (Eberhardt O. Voight) Garland Science 2012 | |||||
376-0152-00L | Anatomy and Physiology II | O | 5 credits | 4V | M. Ristow, K. De Bock, M. Kopf, L. Slomianka, C. Spengler | |
Abstract | Basic knowledge of the anatomy and physiology of the gastrointestinal tract, endocrine organs, urinary system and the reproductive system. Knowlewdge of the basic mechanisms of pathobiology. Study of all human tissues and selected organs by examining slides under the light microscope. | |||||
Learning objective | Foundations of human anatomy and physiology and basics of clinical pathophysiology | |||||
Content | Short overview of human anatomy, physiology and general pathology. 3rd semester: Principles of histology and embryology. Anatomy and physiology: nervous system, muscle, sensory organs, circulatory system, respiratory system. 4rd semester: Anatomy and physiology: gastrointestinal tract, endocrine system, metabolism and thermoregulation, integumentary system, blood and immune system, urinary system, circadian rhythm, reproductive system, pregnancy and birth. | |||||
Literature | Anatomie: Martini, Timmons, Tallitsch, "Anatomie", Pearson; oder Schiebler, Korf, "Anatomie", Steinkopff / Springer; oder Spornitz, "Anatomie und Physiologie, Lehrbuch und Atlas für Pflege-und Gesundheitsfachberufe", Springer Physiologie: Thews/Mutschler/Vaupel: Anatomie, Physiologie, Pathophysiologie des Menschen, Wissenschaftliche Verlagsgesellschaft, Stuttgart oder Schmidt/Lang/Thews: Physiologie des Menschen, Springer-Verlag, Heidelberg | |||||
Prerequisites / Notice | Der Besuch der Anatomie und Physiologie I - Vorlesung ist Voraussetzung, da die Anatomie und Physiologie II - Vorlesung auf dem Wissen der im vorangegangenen Semester gelesenen Anatomie und Physiologie I - Vorlesung aufbaut. | |||||
529-0430-00L | Practical Course Physical Chemistry (for Biol./Pharm.Sci.) | O | 3 credits | 4P | E. C. Meister | |
Abstract | Practical introduction to important basic experimental methods in physical chemistry. Investigation of qualitative and quantitative relations between physico-chemical quantities of the systems under study. | |||||
Learning objective | The students have to carry out selected experiments in physical chemistry using important measurement methods and devices. The measured data have to be processed, mostly with the aid of computers, and considering error propagation and statistics. Detailed laboratory reports have to be written to each experiment. | |||||
Content | Basic physical chemistry experiments covering chemical thermodynamics and kinetics, electrochemistry, viscosity and optical spectroscopy. Computer simulation of physical-chemical phenomena. | |||||
Lecture notes | Erich Meister, Grundpraktikum Physikalische Chemie: Theorie und Experimente, 2. Auflage, vdf Hochschul-Verlag an der ETH, Zürich, 2012. Supplementary material to experiments is available. | |||||
701-0245-00L | Introduction to Evolutionary Biology | O | 2 credits | 2V | G. Velicer, S. Wielgoss | |
Abstract | This course introduces important questions about the evolutionary processes involved in the generation and maintenance of biological diversity across all domains of life and how evolutionary science investigates these questions. | |||||
Learning objective | This course introduces important questions about the evolutionary processes involved in the generation and maintenance of biological diversity across all domains of life and how evolutionary science investigates these questions. The topics covered range from different forms of selection, phylogenetic analysis, population genetics, life history theory, the evolution of sex, social evolution to human evolution. These topics are important for the understanding of a number of evolutionary problems in the basic and applied sciences. | |||||
Content | Topics likely to be covered in this course include research methods in evolutionary biology, adaptation, evolution of sex, evolutionary transitions, human evolution, infectious disease evolution, life history evolution, macroevolution, mechanisms of evolution, phylogenetic analysis, population dynamics, population genetics, social evolution, speciation and types of selection. | |||||
Literature | Textbook: Evolutionary Analysis Scott Freeman and Jon Herron 5th Edition, English. | |||||
Prerequisites / Notice | The exam is based on lecture and textbook. |
- Page 1 of 4 All