Suchergebnis: Katalogdaten im Herbstsemester 2019
Chemie- und Bioingenieurwissenschaften Master | ||||||
Master-Studium (Studienreglement 2018) | ||||||
Kernfächer | ||||||
Bioverfahrenstechnik | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
529-0837-01L | Biomicrofluidic Engineering Number of participants limited to 25. IMPORTANT NOTICE for Chemical and Bioengineering students: There are two different version of this course for the two regulations (2005/2018), please make sure to register for the correct version according to the regulations you are enrolled in. Please do not register for this course if you are enrolled in regulations 2005. | W+ | 6 KP | 3G | A. de Mello | |
Kurzbeschreibung | Microfluidics describes the behaviour, control and manipulation of fluids that are geometrically constrained within sub-microliter environments. The use of microfluidic devices offers an opportunity to control physical and chemical processes with unrivalled precision, and in turn provides a route to performing chemistry and biology in an ultra-fast and high-efficiency manner. | |||||
Lernziel | In the course students will investigate the theoretical concepts behind microfluidic device operation, the methods of microfluidic device manufacture and the application of microfluidic architectures to important problems faced in modern day chemical and biological analysis. A design workshop will allow students to develop new microscale flow processes by appreciating the dominant physics at the microscale. The application of these basic ideas will primarily focus on biological problems and will include a treatment of diagnostic devices for use at the point-of-care, advanced functional material synthesis, DNA analysis, proteomics and cell-based assays. Lectures, assignments and the design workshop will acquaint students with the state-of-the-art in applied microfluidics. | |||||
Inhalt | Specific topics in the course include, but not limited to: 1. Theoretical Concepts Features of mass and thermal transport on the microscale Key scaling laws 2. Microfluidic Device Manufacture Conventional lithographic processing of rigid materials Soft lithographic processing of plastics and polymers Mass fabrication of polymeric devices 3. Unit operations and functional components Analytical separations (electrophoresis and chromatography) Chemical and biological synthesis Sample pre-treatment (filtration, SPE, pre-concentration) Molecular detection 4. Design Workshop Design of microfluidic architectures for PCR, distillation & mixing 5. Contemporary Applications in Biological Analysis Microarrays Cellular analyses (single cells, enzymatic assays, cell sorting) Proteomics 6. System integration Applications in radiochemistry, diagnostics and high-throughput experimentation | |||||
Skript | Lecture handouts, background literature, problem sheets and notes will be provided electronically. | |||||
529-0615-01L | Biochemical and Polymer Reaction Engineering IMPORTANT NOTICE for Chemical and Bioengineering students: There are two different version of this course for the two regulations (2005/2018), please make sure to register for the correct version according to the regulations you are enrolled in. Please do not register for this course if you are enrolled in regulations 2005. | W+ | 6 KP | 3G | P. Arosio | |
Kurzbeschreibung | Polymerization reactions and processes. Homogeneous and heterogeneous (emulsion) kinetics of free radical polymerization. Post treatment of polymer colloids. Bioprocesses for the production of molecules and therapeutic proteins. Kinetics and design of aggregation processes of macromolecules and proteins. | |||||
Lernziel | The aim of the course is to learn how to design polymerization reactors and bioreactors to produce polymers and proteins with the specific product qualities that are required by different applications in chemical, pharmaceutical and food industry. This activity includes the post-treatment of polymer latexes, the downstream processing of proteins and the analysis of their colloidal behavior. | |||||
Inhalt | We will cover the fundamental processes and the operation units involved in the production of polymeric materials and proteins. In particular, the following topics are discussed: Overview on the different polymerization processes. Kinetics of free-radical polymerization and use of population balance models. Production of polymers with controlled characteristics in terms of molecular weight distribution. Kinetics and control of emulsion polymerization. Surfactants and colloidal stability. Aggregation kinetics and aggregate structure in conditions of diffusion and reaction limited aggregation. Modeling and design of colloid aggregation processes. Physico-chemical characterization of proteins and description of enzymatic reactions. Operation units in bioprocessing: upstream, reactor design and downstream. Industrial production of therapeutic proteins. Characterization and engineering of protein aggregation. Protein aggregation in biology and in biotechnology as functional materials. | |||||
Skript | Scripts are available on the web page of the Arosio-group: http://www.arosiogroup.ethz.ch/education.html Additional handout of slides will be provided during the lectures. | |||||
Literatur | R.J. Hunter, Foundations of Colloid Science, Oxford University Press, 2nd edition, 2001 D. Ramkrishna, Population Balances, Academic Press, 2000 H.W. Blanch, D. S. Clark, Biochemical Engineering, CRC Press, 1995 |
- Seite 1 von 1