Suchergebnis: Katalogdaten im Herbstsemester 2019

Chemie- und Bioingenieurwissenschaften Master Information
Master-Studium (Studienreglement 2018)
Wahlfächer
Bioverfahrenstechnik
NummerTitelTypECTSUmfangDozierende
636-0108-00LBiological Engineering and Biotechnology
Attention: This course was offered in previous semesters with the number: 636-0003-00L "Biological Engineering and Biotechnology". Students that already passed course 636-0003-00L cannot receive credits for course 636-0108-00L.
W4 KP3VM. Fussenegger
KurzbeschreibungBiological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.
LernzielBiological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.
Inhalt1. Insight Into The Mammalian Cell Cycle. Cycling, The Balance Between Proliferation and Cancer - Implications For Biopharmaceutical Manufacturing. 2. The Licence To Kill. Apoptosis Regulatory Networks - Engineering of Survival Pathways To Increase Robustness of Production Cell Lines. 3. Everything Under Control I. Regulated Transgene Expression in Mammalian Cells - Facts and Future. 4. Secretion Engineering. The Traffic Jam getting out of the Cell. 5. From Target To Market. An Antibody's Journey From Cell Culture to The Clinics. 6. Biology and Malign Applications. Do Life Sciences Enable the Development of Biological Weapons? 7. Functional Food. Enjoy your Meal! 8. Industrial Genomics. Getting a Systems View on Nutrition and Health - An Industrial Perspective. 9. IP Management - Food Technology. Protecting Your Knowledge For Business. 10. Biopharmaceutical Manufacturing I. Introduction to Process Development. 11. Biopharmaceutical Manufacturing II. Up- stream Development. 12. Biopharmaceutical Manufacturing III. Downstream Development. 13. Biopharmaceutical Manufacturing IV. Pharma Development.
SkriptHandout during the course.
636-0007-00LComputational Systems Biology Information W6 KP3V + 2UJ. Stelling
KurzbeschreibungStudy of fundamental concepts, models and computational methods for the analysis of complex biological networks. Topics: Systems approaches in biology, biology and reaction network fundamentals, modeling and simulation approaches (topological, probabilistic, stoichiometric, qualitative, linear / nonlinear ODEs, stochastic), and systems analysis (complexity reduction, stability, identification).
LernzielThe aim of this course is to provide an introductory overview of mathematical and computational methods for the modeling, simulation and analysis of biological networks.
InhaltBiology has witnessed an unprecedented increase in experimental data and, correspondingly, an increased need for computational methods to analyze this data. The explosion of sequenced genomes, and subsequently, of bioinformatics methods for the storage, analysis and comparison of genetic sequences provides a prominent example. Recently, however, an additional area of research, captured by the label "Systems Biology", focuses on how networks, which are more than the mere sum of their parts' properties, establish biological functions. This is essentially a task of reverse engineering. The aim of this course is to provide an introductory overview of corresponding computational methods for the modeling, simulation and analysis of biological networks. We will start with an introduction into the basic units, functions and design principles that are relevant for biology at the level of individual cells. Making extensive use of example systems, the course will then focus on methods and algorithms that allow for the investigation of biological networks with increasing detail. These include (i) graph theoretical approaches for revealing large-scale network organization, (ii) probabilistic (Bayesian) network representations, (iii) structural network analysis based on reaction stoichiometries, (iv) qualitative methods for dynamic modeling and simulation (Boolean and piece-wise linear approaches), (v) mechanistic modeling using ordinary differential equations (ODEs) and finally (vi) stochastic simulation methods.
Skripthttp://www.csb.ethz.ch/education/lectures.html
LiteraturU. Alon, An introduction to systems biology. Chapman & Hall / CRC, 2006.

Z. Szallasi et al. (eds.), System modeling in cellular biology. MIT Press, 2010.

B. Ingalls, Mathematical modeling in systems biology: an introduction. MIT Press, 2013
376-1714-00LBiocompatible MaterialsW4 KP3GK. Maniura, M. Rottmar, M. Zenobi-Wong
KurzbeschreibungIntroduction to molecules used for biomaterials, molecular interactions between different materials and biological systems (molecules, cells, tissues). The concept of biocompatibility is discussed and important techniques from biomaterials research and development are introduced.
LernzielThe course covers the follwing topics:
1. Introdcution into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials.
2. The concept of biocompatibility.
3. Introduction into methodology used in biomaterials research and application.
4. Introduction to different material classes in use for medical applications.
InhaltIntroduction into natural and polymeric biomaterials used for medical applications. The concepts of biocompatibility, biodegradation and the consequences of degradation products are discussed on the molecular level. Different classes of materials with respect to potential applications in tissue engineering, drug delivery and for medical devices are introduced. Strong focus lies on the molecular interactions between materials having very different bulk and/or surface chemistry with living cells, tissues and organs. In particular the interface between the materials surfaces and the eukaryotic cell surface and possible reactions of the cells with an implant material are elucidated. Techniques to design, produce and characterize materials in vitro as well as in vivo analysis of implanted and explanted materials are discussed.
A link between academic research and industrial entrepreneurship is demonstrated by external guest speakers, who present their current research topics.
SkriptHandouts are deposited online (moodle).
LiteraturLiterature:
- Biomaterials Science: An Introduction to Materials in Medicine, Ratner B.D. et al, 3rd Edition, 2013
- Comprehensive Biomaterials, Ducheyne P. et al., 1st Edition, 2011

(available online via ETH library)

Handouts and references therin.
529-0615-01LBiochemical and Polymer Reaction Engineering
IMPORTANT NOTICE for Chemical and Bioengineering students: There are two different version of this course for the two regulations (2005/2018), please make sure to register for the correct version according to the regulations you are enrolled in. Please do not register for this course if you are enrolled in regulations 2005.
W6 KP3GP. Arosio
KurzbeschreibungPolymerization reactions and processes. Homogeneous and heterogeneous (emulsion) kinetics of free radical polymerization. Post treatment of polymer colloids. Bioprocesses for the production of molecules and therapeutic proteins. Kinetics and design of aggregation processes of macromolecules and proteins.
LernzielThe aim of the course is to learn how to design polymerization reactors and bioreactors to produce polymers and proteins with the specific product qualities that are required by different applications in chemical, pharmaceutical and food industry. This activity includes the post-treatment of polymer latexes, the downstream processing of proteins and the analysis of their colloidal behavior.
InhaltWe will cover the fundamental processes and the operation units involved in the production of polymeric materials and proteins. In particular, the following topics are discussed: Overview on the different polymerization processes. Kinetics of free-radical polymerization and use of population balance models. Production of polymers with controlled characteristics in terms of molecular weight distribution. Kinetics and control of emulsion polymerization. Surfactants and colloidal stability. Aggregation kinetics and aggregate structure in conditions of diffusion and reaction limited aggregation. Modeling and design of colloid aggregation processes. Physico-chemical characterization of proteins and description of enzymatic reactions. Operation units in bioprocessing: upstream, reactor design and downstream. Industrial production of therapeutic proteins. Characterization and engineering of protein aggregation. Protein aggregation in biology and in biotechnology as functional materials.
SkriptScripts are available on the web page of the Arosio-group: http://www.arosiogroup.ethz.ch/education.html
Additional handout of slides will be provided during the lectures.
LiteraturR.J. Hunter, Foundations of Colloid Science, Oxford University Press, 2nd edition, 2001
D. Ramkrishna, Population Balances, Academic Press, 2000
H.W. Blanch, D. S. Clark, Biochemical Engineering, CRC Press, 1995
529-0837-01LBiomicrofluidic Engineering Belegung eingeschränkt - Details anzeigen
Number of participants limited to 25.

IMPORTANT NOTICE for Chemical and Bioengineering students: There are two different version of this course for the two regulations (2005/2018), please make sure to register for the correct version according to the regulations you are enrolled in. Please do not register for this course if you are enrolled in regulations 2005.
W6 KP3GA. de Mello
KurzbeschreibungMicrofluidics describes the behaviour, control and manipulation of fluids that are geometrically constrained within sub-microliter environments. The use of microfluidic devices offers an opportunity to control physical and chemical processes with unrivalled precision, and in turn provides a route to performing chemistry and biology in an ultra-fast and high-efficiency manner.
LernzielIn the course students will investigate the theoretical concepts behind microfluidic device operation, the methods of microfluidic device manufacture and the application of microfluidic architectures to important problems faced in modern day chemical and biological analysis. A design workshop will allow students to develop new microscale flow processes by appreciating the dominant physics at the microscale. The application of these basic ideas will primarily focus on biological problems and will include a treatment of diagnostic devices for use at the point-of-care, advanced functional material synthesis, DNA analysis, proteomics and cell-based assays. Lectures, assignments and the design workshop will acquaint students with the state-of-the-art in applied microfluidics.
InhaltSpecific topics in the course include, but not limited to:

1. Theoretical Concepts
Features of mass and thermal transport on the microscale
Key scaling laws
2. Microfluidic Device Manufacture
Conventional lithographic processing of rigid materials
Soft lithographic processing of plastics and polymers
Mass fabrication of polymeric devices
3. Unit operations and functional components
Analytical separations (electrophoresis and chromatography)
Chemical and biological synthesis
Sample pre-treatment (filtration, SPE, pre-concentration)
Molecular detection
4. Design Workshop
Design of microfluidic architectures for PCR, distillation & mixing
5. Contemporary Applications in Biological Analysis
Microarrays
Cellular analyses (single cells, enzymatic assays, cell sorting)
Proteomics
6. System integration
Applications in radiochemistry, diagnostics and high-throughput experimentation
SkriptLecture handouts, background literature, problem sheets and notes will be provided electronically.
Umwelt und Energie
NummerTitelTypECTSUmfangDozierende
151-0209-00LRenewable Energy Technologies Information W4 KP3GA. Steinfeld
KurzbeschreibungRenewable energy technologies: solar, biomass, wind, geothermal, hydro, waste-to-energy. Focus is on the engineering aspects.
LernzielStudents learn the potential and limitations of renewable energy technologies and their contribution towards sustainable energy utilization.
Voraussetzungen / BesonderesPrerequisite: strong background on the fundamentals of engineering thermodynamics, equivalent to the material taught in the courses Thermodynamics I, II, and III of D-MAVT.
529-0659-00LElektrochemie Information W6 KP3GP. Novák
KurzbeschreibungElektrolyte: Leitfähigkeit, Überführungszahl, Diffusion, Migration, Konvektion. Phasengrenze Elektrode/ Elektrolyt, Nernst-Gleichung, Potentialverlauf als Funktion des Umsatzes. Kinetik, Überspannung. Elektrokatalyse. Poröse Elektroden, Festkörperelektrochemie, Stromdichteverteilung, Elektroanal. Methoden. Anwendungen: Elektrolyse, Galvanotechnik, Batterien, Elektrosynthese, Sensoren, Korrosion.
LernzielDie Studierenden sind mit den Grundlagen der Elektrochemie vertraut und haben die Fähigkeit erworben, elektrochemische Vorgänge in technischen Prozessen und Produkten zu beschreiben und Berechnungen dazu durchführen zu können.
InhaltHistorische Entwicklung und Anwendungsgebiete der Elektrochemie. Elektrochemische Zellen: Elektroden, Elektrolyt, Ladungsdurchtritt, Stofffluss, Stoffumsatz. Elektrolyte: Struktur der Lösungen, Leitfähigkeit, Überführungszahl, feste Elektrolyte, Polymerelektrolyte. Stofftransport im Elektrolyten: Diffusion, Migration, Konvektion, Grenzstrom. Zellspannung, Elektrodenpotential, Potentialreihe. Reversible Elektrodenreaktionen: Nernst’ sche Gleichung, Potentialverlauf als Funktion des Umsatzes. Phasengrenze Elektrode / Elektrolyt: elektrochemische Doppelschicht, Austauschstromdichte. Kinetik elektrochemischer Reaktionen: globale und lokale Stromdichte, Überspannung, Tafel’sche und Butler / Volmer-Gleichung. Elektrokatalyse. Poröse Elektroden, Festkörperelektrochemie, Stromdichteverteilung in den Elektroden und im Elektrolyten, elektrochemisches Engineering. Elektroanalytische Methoden: Chronopotentiometrie, Cyclovoltammetrie, elektrochemische Impedanz. Anwendungen: Elektrolyse, Galvanotechnik, Batterien, Superkondensatoren, Brennstoffzellen, Elektrosynthese, elektrochemische Sensoren, Korrosion.
LiteraturC.H. Hamann, W. Vielstich, Elektrochemie, Wiley-VCH 2005 (4. Ausgabe)
[English version available as well]
529-0745-01LGeneral and Environmental Toxicology
IMPORTANT NOTICE for Chemistry and Chemical and Bioengineering students: There are two different version of this course for the two regulations (2005/2018), please make sure to register for the correct version according to the regulations you are enrolled in. Please do not register for this course if you are enrolled in regulations 2005.
W6 KP3VM. Arand, H. Nägeli, B. B. Stieger, I. Werner
KurzbeschreibungVerständnis der Chemikalienwirkung auf biologische Systeme. Wertung der Effekte nach verschiedenen biomedizinischen Gesichtspunkten.
LernzielVerständnis der Chemikalienwirkung auf biologische Systeme. Wertung der Effekte nach verschiedenen biomedizinischen Gesichtspunkten.
InhaltDarstellung der wichtigsten Interaktionen von Fremdstoffen mit zellulären Strukturen wie Membranen, Enzymen und Nukleinsäuren. Bedeutung von Aufnahme, Verteilung, Ausscheidung und chemisch-biologischen Umwandlungsprozessen. Bedeutung von Gemischen. Darstellung wichtiger Toxizitätsmechanismen wie Immunotoxizität, Neurotoxizität, Entwicklungs- und Reproduktionstoxizität oder Gentoxizität anhand von Beispielen von Fremdstoffen und Auswirkungen auf kritische Organe.
SkriptUnterlagen werden in der Vorlesung abgegeben.
LiteraturLehrbücher in Pharmakologie und Toxikologie (vgl. Liste im Kursmaterial)
Voraussetzungen / BesonderesVoraussetzungen: Grundlagen in Säugetierbiologie, Chemie und Biochemie
Anlage- und Verfahrenstechnik
NummerTitelTypECTSUmfangDozierende
151-0109-00LTurbulent FlowsW4 KP2V + 1UP. Jenny
KurzbeschreibungInhalt
- Laminare und turbulente Strömungen, Turbulenzentstehung - Statistische Beschreibung: Mittelung, Turbulenzenergie, Dissipation, Schliessungsproblem - Skalenbetrachtungen. Homogene isotrope Turbulenz, Korrelationen, Fourierzerlegung, Energiespektrum - Freie Turbulenz. Nachlauf, Freistrahl, Mischungsschicht - Wandturbulenz. Turbulente Grenzschicht, Kanalströmung - Turbulenzberechnung
LernzielDie Vorlesung vermittelt einen Einblick in grundlegende physikalische Phänomene turbulenter Strömungen und in Gesetzmässigkeiten zu ihrer Beschreibung, basierend auf den strömungsmechanischen Grundgleichungen und daraus abgeleiteten Gleichungen. Grundlagen zur Berechnung turbulenter Strömungen und Elemente der Turbulenzmodellierung werden dargestellt.
Inhalt- Eigenschaften laminarer, transitioneller und turbulenter Strömungen
- Turbulenzbeeinflussung und Turbulenzentstehung, hydrodynamische Instabilität und Transition
- Statistische Beschreibung: Mittelung, Gleichungen für mittlere Strömung, turbulente Schwankungen, Turbulenzenergie, Reynoldsspannungen, Dissipation. Schliessungsproblem
- Skalenbetrachtungen. Homogene isotrope Turbulenz, Korrelationen, Fourierzerlegung, Energiespektrum, Gitterturbulenz
- Freie Turbulenz. Nachlauf, Freistrahl, Mischungsschicht
- Wandturbulenz. Turbulente Grenzschicht, Kanalströmung
- Grundlagen zur Berechnung turbulenter Strömungen und Elemente der Turbulenzmodellierung (Wirbelzähigkeitsmodelle, k-epsilon-Modell).
SkriptLecture notes in English, zusätzliches schriftliches Begleitmaterial auf Deutsch
LiteraturS.B. Pope, Turbulent Flows, Cambridge University Press, 2000
529-0611-01LMolecular Aspects of Catalysts and Surfaces
IMPORTANT NOTICE for Chemical and Bioengineering students: There are two different version of this course for the two regulations (2005/2018), please make sure to register for the correct version according to the regulations you are enrolled in. Please do not register for this course if you are enrolled in regulations 2005.
W6 KP4GJ. A. van Bokhoven, D. Ferri
KurzbeschreibungBasic elements of surface science important for materials and catalysis research. Physical and chemical methods important for research in surface science, material science and catalysis are considered and their application is demonstrated on practical examples.
LernzielBasic aspects of surface science. Understanding of principles of most important experimental methods used in research concerned with surface science, material science and catalysis.
InhaltMethods which are covered embrace: Gas adsorption and surface area analysis, IR-Spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, X-ray absorption, solid state NMR, Electron Microscopy and others.
Modellierung und Simulation
NummerTitelTypECTSUmfangDozierende
151-0207-00LTheory and Modeling of Reactive FlowsW4 KP3GC. E. Frouzakis, I. Mantzaras
KurzbeschreibungThe course first reviews the governing equations and combustion chemistry, setting the ground for the analysis of homogeneous gas-phase mixtures, laminar diffusion and premixed flames. Catalytic combustion and its coupling with homogeneous combustion are dealt in detail, and turbulent combustion modeling approaches are presented. Available numerical codes will be used for modeling.
LernzielTheory of combustion with numerical applications
InhaltThe analysis of realistic reactive flow systems necessitates the use of detailed computer models that can be constructed starting from first principles i.e. thermodynamics, fluid mechanics, chemical kinetics, and heat
and mass transport. In this course, the focus will be on combustion theory and modeling. The reacting flow governing equations and the combustion chemistry are firstly reviewed, setting the ground for the analysis of
homogeneous gas-phase mixtures, laminar diffusion and premixed flames. Heterogeneous (catalytic) combustion, an area of increased importance in the last years, will be dealt in detail along with its coupling with homogeneous
combustion. Finally, approaches for the modeling of turbulent combustion will be presented. Available numerical codes will be used to compute the above described phenomena. Familiarity with numerical methods for the solution of partial differential equations is expected.
SkriptHandouts
Voraussetzungen / BesonderesNEW course
529-0004-01LClassical Simulation of (Bio)Molecular Systems Information
IMPORTANT NOTICE for Chemistry and Chemical and Bioengineering students: There are two different version of this course for the two regulations (2005/2018), please make sure to register for the correct version according to the regulations you are enrolled in. Please do not register for this course if you are enrolled in regulations 2005.
W6 KP4GP. H. Hünenberger
KurzbeschreibungMolecular models, classical force fields, configuration sampling, molecular dynamics simulation, boundary conditions, electrostatic interactions, analysis of trajectories, free-energy calculations, structure refinement, applications in chemistry and biology. Exercises: hands-on computer exercises for learning progressively how to perform an analyze classical simulations (using the package GROMOS).
LernzielIntroduction to classical (atomistic) computer simulation of (bio)molecular systems, development of skills to carry out and interpret these simulations.
InhaltMolecular models, classical force fields, configuration sampling, molecular dynamics simulation, boundary conditions, electrostatic interactions, analysis of trajectories, free-energy calculations, structure refinement, applications in chemistry and biology. Exercises: hands-on computer exercises for learning progressively how to perform an analyze classical simulations (using the package GROMOS).
SkriptScript booklet (copies of powerpoint slides) distributed at the first or second lecture.
LiteraturSee: www.csms.ethz.ch/education/CSBMS
Voraussetzungen / BesonderesSince the exercises on the computer do convey and test essentially different skills than those being conveyed during the lectures and tested at the oral exam, the results of the exercises are taken into account when evaluating the results of the exam (learning component, possible bonus of up to 0.25 points on the exam mark).

For more information about the lecture: www.csms.ethz.ch/education/CSBMS
327-0508-00LSimulationstechniken in der Materialwissenschaft Information W4 KP2V + 2UC. Ederer
KurzbeschreibungEinführung in für Materialwissenschaft relevante Simulationstechniken. Simulationsmethoden für Kontinua (Finite Differenzen, Finite Elemente), mesoskopische Methoden (zelluläre Automaten, mesoskopische Monte Carlo Methoden), mikroskopische Methoden (Molekulardynamik, Monte-Carlo Simulation, Dichtefunktionaltheorie).
LernzielErlernen von Techniken, die in der rechnergestützten Physik für Materialien benötigt werden; Erlangen eines Überblicks, welche Simulationsmethoden für spezifische Fragestellungen sinnvoll sind; Entwicklung der Fähigkeit, materialwissenschaftliche Fragestellungen komplexer Systeme mit Hilfe des Computers zu behandeln.
Inhalt- Modellierung und Simulationen in der Materialwissenschaft.
- Simulationsmethoden für Kontinua (Finite Differenzen, Grundidee der finiten Elemente).
- Mesoskopische Methoden (Zelluläre Automaten, Phasenfeld-Modelle, mesoskopische Monte Carlo Methoden).
- Mikroskopische Methoden (Molekulardynamik, Monte Carlo Simulation für Vielteilchensysteme, Grundidee der Dichtefunktionaltheorie).
Literatur- R. Lesar, Introduction to Computational Materials Science (Cambridge University Press 2013).
- D. Frenkel and B. Smit, Understanding Molecular Simulations (Academic Press 2002).
- M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, 1987).
- D. Raabe, Computational Materials Science (Wiley-VCH 1998).
Wirtschafts- und Technikmanagement
NummerTitelTypECTSUmfangDozierende
363-0389-00LTechnology and Innovation Management Information W3 KP2GS. Brusoni
KurzbeschreibungThis course focuses on the analysis of innovation as a pervasive process that cut across organizational and functional boundaries. It looks at the sources of innovation, at the tools and techniques that organizations deploy to routinely innovate, and the strategic implications of technical change.
LernzielThis course intends to enable all students to:

- understand the core concepts necessary to analyze how innovation happens

- master the most common methods and tools organizations deploy to innovate

- develop the ability to critically evaluate the innovation process, and act upon the main obstacles to innovation
InhaltThis course looks at technology and innovation management as a process. Continuously, organizations are faced with a fundamental decision: they have to allocate resources between well-known tasks that reliably generate positive results; or explore new ways of doing things, new technologies, products and services. The latter is a high risk choice. Its rewards can be high, but the chances of success are small.
How do firms organize to take these decisions? What kind of management skills are necessary to take them? What kind of tools and methods are deployed to sustain managerial decision-making in highly volatile environments? These are the central questions on which this course focuses, relying on a combination of lectures, case-based discussion, guest speakers, simulations and group work.
SkriptSlides will be available on the Moodle page
LiteraturReadings will be available on the Moodle page
Voraussetzungen / BesonderesThe course content and methods are designed for students with some background in management and/or economics
363-0565-00LPrinciples of MacroeconomicsW3 KP2VJ.‑E. Sturm
KurzbeschreibungThis course examines the behaviour of macroeconomic variables, such as gross domestic product, unemployment and inflation rates. It tries to answer questions like: How can we explain fluctuations of national economic activity? What can economic policy do against unemployment and inflation?
LernzielThis lecture will introduce the fundamentals of macroeconomic theory and explain their relevance to every-day economic problems.
InhaltThis course helps you understand the world in which you live. There are many questions about the macroeconomy that might spark your curiosity. Why are living standards so meagre in many African countries? Why do some countries have high rates of inflation while others have stable prices? Why have some European countries adopted a common currency? These are just a few of the questions that this course will help you answer.
Furthermore, this course will give you a better understanding of the potential and limits of economic policy. As a voter, you help choose the policies that guide the allocation of society's resources. When deciding which policies to support, you may find yourself asking various questions about economics. What are the burdens associated with alternative forms of taxation? What are the effects of free trade with other countries? How does the government budget deficit affect the economy? These and similar questions are always on the minds of policy makers.
SkriptThe course webpage (to be found at https://moodle-app2.let.ethz.ch/course/view.php?id=11092) contains announcements, course information and lecture slides.
LiteraturThe set-up of the course will closely follow the book of
N. Gregory Mankiw and Mark P. Taylor (2017), Economics, Cengage Learning, Fourth Edition.

Besides this textbook, the slides, lecture notes and problem sets will cover the content of the lecture and the exam questions.
363-0503-00LPrinciples of Microeconomics
GESS (Science in Perspective): This lecture is for MSc students only. BSc students register for 363-1109-00L Einführung in die Mikroökonomie.
W3 KP2GM. Filippini
KurzbeschreibungThe course introduces basic principles, problems and approaches of microeconomics. This provides the students with reflective and contextual knowledge on how societies use scarce resources to produce goods and services and ensure a (fair) distribution.
LernzielThe learning objectives of the course are:

(1) Students must be able to discuss basic principles, problems and approaches in microeconomics. (2) Students can analyse and explain simple economic principles in a market using supply and demand graphs. (3) Students can contrast different market structures and describe firm and consumer behaviour. (4) Students can identify market failures such as externalities related to market activities and illustrate how these affect the economy as a whole. (5) Students can also recognize behavioural failures within a market and discuss basic concepts related to behavioural economics. (6) Students can apply simple mathematical concepts on economic problems.
InhaltThe resources on our planet are finite. The discipline of microeconomics therefore deals with the question of how society can use scarce resources to produce goods and services and ensure a (fair) distribution. In particular, microeconomics deals with the behaviour of consumers and firms in different market forms. Economic considerations and discussions are not part of classical engineering and science study programme. Thus, the goal of the lecture "Principles of Microeconomics" is to teach students how economic thinking and argumentation works. The course should help the students to look at the contents of their own studies from a different perspective and to be able to critically reflect on economic problems discussed in the society.

Topics covered by the course are:

- Supply and demand
- Consumer demand: neoclassical and behavioural perspective
- Cost of production: neoclassical and behavioural perspective
- Welfare economics, deadweight losses
- Governmental policies
- Market failures, common resources and public goods
- Public sector, tax system
- Market forms (competitive, monopolistic, monopolistic competitive, oligopolistic)
- International trade
SkriptLecture notes, exercises and reference material can be downloaded from Moodle.
LiteraturN. Gregory Mankiw and Mark P. Taylor (2017), "Economics", 4th edition, South-Western Cengage Learning.
The book can also be used for the course 'Principles of Macroeconomics' (Sturm)

For students taking only the course 'Principles of Microeconomics' there is a shorter version of the same book:
N. Gregory Mankiw and Mark P. Taylor (2017), "Microeconomics", 4th edition, South-Western Cengage Learning.

Complementary:
R. Pindyck and D. Rubinfeld (2018), "Microeconomics", 9th edition, Pearson Education.
Voraussetzungen / BesonderesGESS (Science in Perspective): This lecture is for MSc students only. BSc students register for 363-1109-00L Einführung in die Mikroökonomie.
Produkte und Materialien
NummerTitelTypECTSUmfangDozierende
529-0619-01LChemical Product Design
Prerequisites: Basic chemistry and chemical engineering knowledge (Diffusion, Thermodynamics, Kinetics,...).

IMPORTANT NOTICE for Chemical and Bioengineering students: There are two different version of this course for the two regulations (2005/2018), please make sure to register for the correct version according to the regulations you are enrolled in. Please do not register for this course if you are enrolled in regulations 2005.
W6 KP3GW. J. Stark
KurzbeschreibungThe 'Chemical Product Design' course teaches students quantitative concepts to analyze, select and transform theoretical concepts from chemistry and engineering into valuable real-world products. Basic chemistry and chemical engineering knowledge is required (Diffusion, Thermodynamics, Kinetics, ..).
LernzielThis course starts with analyzing existing chemical needs and unmet technical challenges. We then develop the skills to critically analyze a specific chemical idea for a product, to rapidly test feasibility or chance for success and to eventually realize its manufacturing. The chemical engineering basics are then used to assess performance of products or devices with non-traditional functions based on dynamic properties (e.g. responsive building materials; personal medical diagnostics on paper strips). The course teaches the interface between laboratory and market with a specific focus on evaluating the chemical value of a given process or compound, and the necessary steps to pursue the resulting project within an entrepreneurial environment. We therefore extend the questions of process design ('how do we make something?') to the question of 'what should we make?
InhaltPart A: The 'Chemical Product Design' course starts with discussing questions along, 'What is a chemical product, and why do people pay for it? How does a given compound in a specific setting provide a service?' We then learn how to translate new, often ill-defined wishes or ideas into quantifiable specifications.

Part B: Thermodynamic and kinetic data allow sharp selection criteria for successful products. We learn how to deal with insufficient data and development of robust case models to evaluate their technical and financial constraints. How can parameters of a running process in one industry be scaled into another industry? Can dimensionless engineering numbers be applied beyond traditional chemical processes?

Part C: Manufacturing of commodity products, devices and molecular products: Chemical reactors, separation and detection or isolation units as part of a toolbox. Planning of manufacturing and decisions based on hard data. Providing quantitative answers on potential value generated.

Students are expected to actively develop chemical products along the course. Contributions will be made individually, or in small groups, where a larger topic is studied.
LiteraturCussler, E.L., Moggridge, C.D., Chemical Product Design, Cambridge University Press, Cambridge, UK, 2nd edition, 2011.

Original Literature: Issues and Trends in the Teaching of Process and Product Design, Biegler, L.T., Grossmann, I.E., Westerber, A.W., AIChE J., 56 (5) 1120-25, 2010.
Prozessentwurf
NummerTitelTypECTSUmfangDozierende
529-0643-01LProcess Design and Development Information
IMPORTANT NOTICE for Chemical and Bioengineering students: There are two different version of this course for the two regulations (2005/2018), please make sure to register for the correct version according to the regulations you are enrolled in. Please do not register for this course if you are enrolled in regulations 2005.
W6 KP3GG. Storti
KurzbeschreibungThe course is focused on the design of Chemical Processes, with emphasis on the preliminary stage of the design approach, where process creation and quick selection among many alternatives are important. The main concepts behind more detailed process design and process simulation are also examined in the last part of the course.
LernzielThe course is focused on the design of Chemical Processes, with emphasis on the preliminary stage of the design approach, where process creation and quick selection among many alternatives are important. The main concepts behind more detailed process design and process simulation are also examined in the last part of the course.
InhaltProcess creation: decomposition strategies (reduction of differences - vinyl chloride production and hierarchical decomposition - ethanol production). Identification of the "base case design". Heuristics for process synthesis.
Preliminary process evaluation: simplified material and energy balances (linear balances), degrees of freedom, short-cut models, flowsheet solution algorithm).
Process Integration: sequencing of distillation columns, synthesis of heat exchanger networks.
Process economic evaluation: equipment sizing and costing, time value of money, cash flow calculations.
Batch Processes: scheduling, sizing and inventories.
Detailed Process Design: unit operation models, flash solution algorithms (different iterative methods, inside-out method), sequencing of nonideal distillation columns, networks of chemical reactors.
Skriptno script
LiteraturL.T.Biegler et al., Systematic Methods of Chemical Process Design, Prentice Hall, 1997.
W.D.Seider et al., Process Design Principles, J. Wiley & Sons, 1998.
J.M.Douglas, Conceptual Design of Chemical Processes, McGraw-Hill, 1988.
Voraussetzungen / BesonderesPrerequisite: Thermal Unit Operations
529-0613-01LProcess Simulation and Flowsheeting
IMPORTANT NOTICE for Chemical and Bioengineering students: There are two different version of this course for the two regulations (2005/2018), please make sure to register for the correct version according to the regulations you are enrolled in. Please do not register for this course if you are enrolled in regulations 2005.
W6 KP3GG. Guillén Gosálbez
KurzbeschreibungThis course encompasses the theoretical principles of chemical process simulation, as well as its practical application in process analysis and optimization. The techniques for simulating stationary and dynamic processes are presented, and illustrated with case studies. Commercial software packages are presented as a key engineering tool for solving process flowsheeting and simulation problems.
LernzielThis course aims to develop the competency of chemical engineers in process flowsheeting and simulation. Specifically, students will develop the following skills:
- Deep understanding of chemical engineering fundamentals: the acquisition of new concepts and the application of previous knowledge in the area of chemical process systems and their mechanisms are crucial to intelligently simulate and evaluate processes.
- Modeling of general chemical processes and systems: students have to be able to identify the boundaries of the system to be studied and develop the set of relevant mathematical relations, which describe the process behavior.
- Mathematical reasoning and computational skills: the familiarization with mathematical algorithms and computational tools is essential to be capable of achieving rapid and reliable solutions to simulation and optimization problems. Hence, students will learn the mathematical principles necessary for process simulation and optimization, as well as the structure and application of process simulation software. Thus, they will be able develop criteria to correctly use commercial software packages and critically evaluate their results.
InhaltOverview of process simulation and flowsheeting
- Definition and fundamentals
- Fields of application
- Case studies

Process simulation
- Modeling strategies of process systems
- Mass and energy balances and degrees of freedom of process units and process systems

Process flowsheeting
- Flowsheet partitioning and tearing
- Solution methods for process flowsheeting
- Simultaneous methods
- Sequential methods

Process optimization and analysis
- Classification of optimization problems
- Linear programming
- Non-linear programming
- Optimization methods in process flowsheeting

Commercial software for simulation: Aspen Plus
- Thermodynamic property methods
- Reaction and reactors
- Separation / columns
- Convergence, optimisation & debugging
LiteraturAn exemplary literature list is provided below:
- Biegler, L.T., Grossmann I.E., Westerberg A.W., 1997, systematic methods of chemical process design. Prentice Hall, Upper Saddle River, US.
- Boyadjiev, C., 2010, Theoretical chemical engineering: modeling and simulation. Springer Verlag, Berlin, Germany.
- Ingham, J., Dunn, I.J., Heinzle, E., Prenosil, J.E., Snape, J.B., 2007, Chemical engineering dynamics: an introduction to modelling and computer simulation. John Wiley & Sons, United States.
- Reklaitis, G.V., 1983, Introduction to material and energy balances. John Wiley & Sons, United States.
Voraussetzungen / BesonderesA basic understanding of material and energy balances, thermodynamic property methods and typical unit operations (e.g., reactors, flash separations, distillation/absorption columns etc.) is required.
Katalyse und Separation
NummerTitelTypECTSUmfangDozierende
151-0927-00LRate-Controlled Separations in Fine ChemistryW6 KP3V + 1UM. Mazzotti
KurzbeschreibungDie Studenten sollen einen vertieften Einblick in die Grundlagen der Trennverfahren erhalten, die in modernen Life Sciences Prozessen - spez. Feinchemie und Biotechnologie - zur Anwendung kommen.
LernzielDie Studenten sollen einen vertieften Einblick in die Grundlagen der Trennverfahren erhalten, die in modernen Life Sciences Prozessen - spez. Feinchemie und Biotechnologie - zur Anwendung kommen.
InhaltThe class covers separation techniques that are central in the purification and downstream processing of chemicals and bio-pharmaceuticals. Examples from both areas illustrate the utility of the methods: 1) Liquid-liquid extraction; 2) Adsorption and chromatography; 3) Membrane processes; 4) Crystallization and precipitation.
SkriptBeilagen in der Vorlesung
LiteraturBücher werden in der Vorlesung besprochen
Voraussetzungen / BesonderesBesonderes: Teile der Vorlesung werden in Englisch gehalten.

Voraussetzungen: Thermische Verfahrenstechnik I (151-0926-00) und Mathematische Methoden in den Chemieingenieurwissenschaften (151-0940-00)
  •  Seite  1  von  2 Nächste Seite Letzte Seite     Alle