Search result: Catalogue data in Autumn Semester 2019
Mathematics Master ![]() | ||||||
![]() For the Master's degree in Applied Mathematics the following additional condition (not manifest in myStudies) must be obeyed: At least 15 of the required 28 credits from core courses and electives must be acquired in areas of applied mathematics and further application-oriented fields. | ||||||
![]() ![]() Further restrictions apply, but in particular: 401-3531-00L Differential Geometry I can only be recognised for the Master Programme if 401-3532-00L Differential Geometry II has not been recognised for the Bachelor Programme. Analogously for: 401-3461-00L Functional Analysis I - 401-3462-00L Functional Analysis II 401-3001-61L Algebraic Topology I - 401-3002-12L Algebraic Topology II 401-3132-00L Commutative Algebra - 401-3146-12L Algebraic Geometry For the category assignment take contact with the Study Administration Office (www.math.ethz.ch/studiensekretariat) after having received the credits. | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|
401-3461-00L | Functional Analysis I ![]() At most one of the three course units (Bachelor Core Courses) 401-3461-00L Functional Analysis I 401-3531-00L Differential Geometry I 401-3601-00L Probability Theory can be recognised for the Master's degree in Mathematics or Applied Mathematics. | E- | 10 credits | 4V + 1U | M. Struwe | |
Abstract | Baire category; Banach and Hilbert spaces, bounded linear operators; basic principles: Uniform boundedness, open mapping/closed graph theorem, Hahn-Banach; convexity; dual spaces; weak and weak* topologies; Banach-Alaoglu; reflexive spaces; compact operators and Fredholm theory; closed range theorem; spectral theory of self-adjoint operators in Hilbert spaces. | |||||
Learning objective | Acquire a good degree of fluency with the fundamental concepts and tools belonging to the realm of linear Functional Analysis, with special emphasis on the geometric structure of Banach and Hilbert spaces, and on the basic properties of linear maps. | |||||
Literature | We will be using the Lecture Notes on "Funktionalanalysis I" by Michael Struwe. Other useful, and recommended references include the following books: Haim Brezis: "Functional analysis, Sobolev spaces and partial differential equations". Springer, 2011. Manfred Einsiedler and Thomas Ward: "Functional Analysis, Spectral Theory, and Applications", Graduate Text in Mathematics 276. Springer, 2017. Peter D. Lax: "Functional analysis". Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York, 2002. Elias M. Stein and Rami Shakarchi: "Functional analysis" (volume 4 of Princeton Lectures in Analysis). Princeton University Press, Princeton, NJ, 2011. Walter Rudin: "Functional analysis". International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, second edition, 1991. Dirk Werner, "Funktionalanalysis". Springer-Lehrbuch, 8. Auflage. Springer, 2018 | |||||
Prerequisites / Notice | Solid background on the content of all Mathematics courses of the first two years of the undergraduate curriculum at ETH (most remarkably: fluency with measure theory, Lebesgue integration and L^p spaces). | |||||
401-3531-00L | Differential Geometry I ![]() At most one of the three course units (Bachelor Core Courses) 401-3461-00L Functional Analysis I 401-3531-00L Differential Geometry I 401-3601-00L Probability Theory can be recognised for the Master's degree in Mathematics or Applied Mathematics. | E- | 10 credits | 4V + 1U | U. Lang | |
Abstract | Introduction to differential geometry and differential topology. Contents: Curves, (hyper-)surfaces in R^n, geodesics, curvature, Theorema Egregium, Theorem of Gauss-Bonnet. Hyperbolic space. Differentiable manifolds, immersions and embeddings, Sard's Theorem, mapping degree and intersection number, vector bundles, vector fields and flows, differential forms, Stokes' Theorem. | |||||
Learning objective | ||||||
Lecture notes | Partial lecture notes are available from https://people.math.ethz.ch/~lang/ | |||||
Literature | Differential geometry in R^n: - Manfredo P. do Carmo: Differential Geometry of Curves and Surfaces - Wolfgang Kühnel: Differentialgeometrie. Kurven-Flächen-Mannigfaltigkeiten - Christian Bär: Elementare Differentialgeometrie Differential topology: - Dennis Barden & Charles Thomas: An Introduction to Differential Manifolds - Victor Guillemin & Alan Pollack: Differential Topology - Morris W. Hirsch: Differential Topology | |||||
401-3371-00L | Dynamical Systems I | W | 10 credits | 4V + 1U | W. Merry | |
Abstract | This course is a broad introduction to dynamical systems. Topic covered include topological dynamics, ergodic theory and low-dimensional dynamics. | |||||
Learning objective | Mastery of the basic methods and principal themes of some aspects of dynamical systems. | |||||
Content | Topics covered include: 1. Topological dynamics (transitivity, attractors, chaos, structural stability) 2. Ergodic theory (Poincare recurrence theorem, Birkhoff ergodic theorem, existence of invariant measures) 3. Low-dimensional dynamics (Poincare rotation number, dynamical systems on [0,1]) | |||||
Literature | The most relevant textbook for this course is Introduction to Dynamical Systems, Brin and Stuck, CUP, 2002. I will also produce full lecture notes, available from my website https://www.merry.io/teaching/ | |||||
Prerequisites / Notice | The material of the basic courses of the first two years of the program at ETH is assumed. In particular, you should be familiar with metric spaces and elementary measure theory. |
Page 1 of 1