Suchergebnis: Katalogdaten im Herbstsemester 2019

Mathematik Master Information
Kernfächer
Für das Master-Diplom in Angewandter Mathematik ist die folgende Zusatzbedingung (nicht in myStudies ersichtlich) zu beachten: Mindestens 15 KP der erforderlichen 28 KP aus Kern- und Wahlfächern müssen aus Bereichen der angewandten Mathematik und weiteren anwendungsorientierten Gebieten stammen.
Bachelor-Kernfächer aus Bereichen der reinen Mathematik
Nebst weiteren Einschränkungen gilt:
Die Anrechnung von 401-3531-00L Differentialgeometrie I / Differential Geometry I im Master-Studiengang ist nur dann zulässig, wenn 401-3532-00L Differentialgeometrie II / Differential Geometry II nicht für den Bachelor-Studiengang angerechnet wurde.
Ebenso für:
401-3461-00L Funktionalanalysis I / Functional Analysis I - 401-3462-00L Funktionalanalysis II / Functional Analysis II
401-3001-61L Algebraische Topologie I / Algebraic Topology I - 401-3002-12L Algebraische Topologie II / Algebraic Topology II
401-3132-00L Kommutative Algebra / Commutative Algebra - 401-3146-12L Algebraische Geometrie / Algebraic Geometry
Wenden Sie sich für die Kategoriezuordnung nach dem Verfügen des Prüfungsresultates an das Studiensekretariat (Link).
NummerTitelTypECTSUmfangDozierende
401-3461-00LFunctional Analysis I Information
Höchstens eines der drei Bachelor-Kernfächer
401-3461-00L Funktionalanalysis I / Functional Analysis I
401-3531-00L Differentialgeometrie I / Differential Geometry I
401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory
ist im Master-Studiengang Mathematik anrechenbar.
E-10 KP4V + 1UM. Struwe
KurzbeschreibungBaire category; Banach and Hilbert spaces, bounded linear operators; basic principles: Uniform boundedness, open mapping/closed graph theorem, Hahn-Banach; convexity; dual spaces; weak and weak* topologies; Banach-Alaoglu; reflexive spaces; compact operators and Fredholm theory; closed range theorem; spectral theory of self-adjoint operators in Hilbert spaces.
LernzielAcquire a good degree of fluency with the fundamental concepts and tools belonging to the realm of linear Functional Analysis, with special emphasis on the geometric structure of Banach and Hilbert spaces, and on the basic properties of linear maps.
LiteraturWe will be using the Lecture Notes on

"Funktionalanalysis I" by Michael Struwe.

Other useful, and recommended references include the following books:

Haim Brezis: "Functional analysis, Sobolev spaces and partial differential equations". Springer, 2011.

Manfred Einsiedler and Thomas Ward: "Functional Analysis, Spectral Theory, and Applications", Graduate Text in Mathematics 276. Springer, 2017.

Peter D. Lax: "Functional analysis". Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York, 2002.

Elias M. Stein and Rami Shakarchi: "Functional analysis" (volume 4 of Princeton Lectures in Analysis). Princeton University Press, Princeton, NJ, 2011.

Walter Rudin: "Functional analysis". International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, second edition, 1991.

Dirk Werner, "Funktionalanalysis". Springer-Lehrbuch, 8. Auflage. Springer, 2018
Voraussetzungen / BesonderesSolid background on the content of all Mathematics courses of the first two years of the undergraduate curriculum at ETH (most remarkably: fluency with measure theory, Lebesgue integration and L^p spaces).
401-3531-00LDifferential Geometry I Information
Höchstens eines der drei Bachelor-Kernfächer
401-3461-00L Funktionalanalysis I / Functional Analysis I
401-3531-00L Differentialgeometrie I / Differential Geometry I
401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory
ist im Master-Studiengang Mathematik anrechenbar.
E-10 KP4V + 1UU. Lang
KurzbeschreibungIntroduction to differential geometry and differential topology. Contents: Curves, (hyper-)surfaces in R^n, geodesics, curvature, Theorema Egregium, Theorem of Gauss-Bonnet. Hyperbolic space. Differentiable manifolds, immersions and embeddings, Sard's Theorem, mapping degree and intersection number, vector bundles, vector fields and flows, differential forms, Stokes' Theorem.
Lernziel
SkriptPartial lecture notes are available from Link
LiteraturDifferential geometry in R^n:
- Manfredo P. do Carmo: Differential Geometry of Curves and Surfaces
- Wolfgang Kühnel: Differentialgeometrie. Kurven-Flächen-Mannigfaltigkeiten
- Christian Bär: Elementare Differentialgeometrie
Differential topology:
- Dennis Barden & Charles Thomas: An Introduction to Differential Manifolds
- Victor Guillemin & Alan Pollack: Differential Topology
- Morris W. Hirsch: Differential Topology
401-3371-00LDynamical Systems IW10 KP4V + 1UW. Merry
KurzbeschreibungThis course is a broad introduction to dynamical systems. Topic covered include topological dynamics, ergodic theory and low-dimensional dynamics.
LernzielMastery of the basic methods and principal themes of some aspects of dynamical systems.
InhaltTopics covered include:

1. Topological dynamics
(transitivity, attractors, chaos, structural stability)

2. Ergodic theory
(Poincare recurrence theorem, Birkhoff ergodic theorem, existence of invariant measures)

3. Low-dimensional dynamics
(Poincare rotation number, dynamical systems on [0,1])
LiteraturThe most relevant textbook for this course is

Introduction to Dynamical Systems, Brin and Stuck, CUP, 2002.

I will also produce full lecture notes, available from my website

Link
Voraussetzungen / BesonderesThe material of the basic courses of the first two years of the program at ETH is assumed. In particular, you should be familiar with metric spaces and elementary measure theory.
  •  Seite  1  von  1