Search result: Catalogue data in Autumn Semester 2019
Mechanical Engineering Bachelor | ||||||
5. Semester | ||||||
Focus Specialization | ||||||
Energy, Flows and Processes Focus Coordinator: Prof. Christoph Müller In order to achieve the required 20 credit points for the Focus Specialization Energy, Flows and Processes you need to choose at least 2 compulsory courses (HS/FS) and at least 2 of the elective courses (HS/FS). One course could be selected among all the courses offered by D-MAVT (Bachelor and Masters). | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|
151-0123-00L | Experimental Methods for Engineers | O | 4 credits | 2V + 2U | T. Rösgen, A.‑K. U. Michel, N. Noiray, H.‑M. Prasser, M. Tibbitt | |
Abstract | The course presents an overview of measurement tasks in engineering environments. Different concepts for the acquisition and processing of typical measurement quantities are introduced. Following an initial in-class introduction, laboratory exercises from different application areas (especially in thermofluidics and process engineering) are attended by students in small groups. | |||||
Learning objective | Introduction to various aspects of measurement techniques, with particular emphasis on thermo-fluidic applications. Understanding of various sensing technologies and analysis procedures. Exposure to typical experiments, diagnostics hardware, data acquisition and processing. Study of applications in the laboratory. Fundamentals of scientific documentation & reporting. | |||||
Content | In-class introduction to representative measurement techniques in the research areas of the participating institutes (fluid dynamics, energy technology, process engineering) Student participation in 8-10 laboratory experiments (study groups of 3-5 students, dependent on the number of course participants and available experiments) Lab reports for all attended experiments have to be submitted by the study groups. A final exam evaluates the acquired knowledge individually. | |||||
Lecture notes | Presentations, handouts and instructions are provided for each experiment. | |||||
Literature | Holman, J.P. "Experimental Methods for Engineers", McGraw-Hill 2001, ISBN 0-07-366055-8 Morris, A.S. & Langari, R. "Measurement and Instrumentation", Elsevier 2011, ISBN 0-12-381960-4 Eckelmann, H. "Einführung in die Strömungsmesstechnik", Teubner 1997, ISBN 3-519-02379-2 | |||||
Prerequisites / Notice | Basic understanding in the following areas: - fluid mechanics, thermodynamics, heat and mass transfer - electrical engineering / electronics - numerical data analysis and processing (e.g. using MATLAB) | |||||
151-0293-00L | Combustion and Reactive Processes in Energy and Materials Technology | O | 4 credits | 2V + 1U + 2A | K. Boulouchos, F. Ernst, N. Noiray, Y. Wright | |
Abstract | The students should become familiar with the fundamentals and with application examples of chemically reactive processes in energy conversion (combustion engines in particular) as well as the synthesis of new materials. | |||||
Learning objective | The students should become familiar with the fundamentals and with application examples of chemically reactive processes in energy conversion (combustion engines in particular) as well as the synthesis of new materials. The lecture is part of the focus "Energy, Flows & Processes" on the Bachelor level and is recommended as a basis for a future Master in the area of energy. It is also a facultative lecture on Master level in Energy Science and Technology and Process Engineering. | |||||
Content | Reaction kinetics, fuel oxidation mechanisms, premixed and diffusion laminar flames, two-phase-flows, turbulence and turbulent combustion, pollutant formation, applications in combustion engines. Synthesis of materials in flame processes: particles, pigments and nanoparticles. Fundamentals of design and optimization of flame reactors, effect of reactant mixing on product characteristics. Tailoring of products made in flame spray pyrolysis. | |||||
Lecture notes | No script available. Instead, material will be provided in lecture slides and the following text book (which can be downloaded for free) will be followed: J. Warnatz, U. Maas, R.W. Dibble, "Combustion:Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation", Springer-Verlag, 1997. Teaching language, assignments and lecture slides in English | |||||
Literature | J. Warnatz, U. Maas, R.W. Dibble, "Combustion:Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation", Springer-Verlag, 1997. I. Glassman, Combustion, 3rd edition, Academic Press, 1996. | |||||
151-0109-00L | Turbulent Flows | W | 4 credits | 2V + 1U | P. Jenny | |
Abstract | Contents - Laminar and turbulent flows, instability and origin of turbulence - Statistical description: averaging, turbulent energy, dissipation, closure problem - Scalings. Homogeneous isotropic turbulence, correlations, Fourier representation, energy spectrum - Free turbulence: wake, jet, mixing layer - Wall turbulence: Channel and boundary layer - Computation and modelling of turbulent flows | |||||
Learning objective | Basic physical phenomena of turbulent flows, quantitative and statistical description, basic and averaged equations, principles of turbulent flow computation and elements of turbulence modelling | |||||
Content | - Properties of laminar, transitional and turbulent flows. - Origin and control of turbulence. Instability and transition. - Statistical description, averaging, equations for mean and fluctuating quantities, closure problem. - Scalings, homogeneous isotropic turbulence, energy spectrum. - Turbulent free shear flows. Jet, wake, mixing layer. - Wall-bounded turbulent flows. - Turbulent flow computation and modeling. | |||||
Lecture notes | Lecture notes are available | |||||
Literature | S.B. Pope, Turbulent Flows, Cambridge University Press, 2000 | |||||
151-0235-00L | Thermodynamics of Novel Energy Conversion Technologies | W | 4 credits | 3G | A. Milionis, G. Sansavini | |
Abstract | In the framework of this course we will look at a current electronic thermal and energy management strategies and novel energy conversion processes. The course will focus on component level fundamentals of these process and system level analysis of interactions among various energy conversion components. | |||||
Learning objective | This course deals with liquid cooling based thermal management of electronics, reuse of waste heat, surface engineering aspects for improving heat transfer, and novel energy conversion and storage systems such as batteries and, fuel cells. The focus of the course is on the physics and basic understanding of those systems as well as their real-world applications. The course will also look at analysis of system level interactions between a range of energy conversion components. | |||||
Content | Part 1: Fundamentals: - Overview of exergy analysis, Single phase cooling and micro-mixing; - Thermodynamics of phase equilibrium and Electrochemistry; - Surface wetting; Part 2: Applications: - Basic principles of battery and fuel cells; -Thermal management and reuse of waste heat from microprocessors - Condensation heat transfer; Part3: System-level analysis - Integration of the components into the system: a case study - Analysis of the coupled operations, identification of critical states - Support to system-oriented design | |||||
Lecture notes | Lecture slides will be made available. | |||||
151-0917-00L | Mass Transfer | W | 4 credits | 2V + 2U | G. Kelesidis, S. E. Pratsinis, A. Güntner, V. Mavrantzas | |
Abstract | This course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated. | |||||
Learning objective | This course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated. | |||||
Content | Fick's laws; application and significance of mass transfer; comparison of Fick's laws with Newton's and Fourier's laws; derivation of Fick's 2nd law; diffusion in dilute and concentrated solutions; rotating disk; dispersion; diffusion coefficients, viscosity and heat conduction (Pr and Sc numbers); Brownian motion; Stokes-Einstein equation; mass transfer coefficients (Nu and Sh numbers); mass transfer across interfaces; Reynolds- and Chilton-Colburn analogies for mass-, heat-, and momentum transfer in turbulent flows; film-, penetration-, and surface renewal theories; simultaneous mass, heat and momentum transfer (boundary layers); homogenous and heterogenous reversible and irreversible reactions; diffusion-controlled reactions; mass transfer and first order heterogenous reaction. Applications. | |||||
Literature | Cussler, E.L.: "Diffusion", 3nd edition, Cambridge University Press, 2009. | |||||
Prerequisites / Notice | Students attending this highly-demanding course are expected to allocate sufficient time within their weekly schedule to successfully conduct the exercises. | |||||
151-0973-00L | Fundamentals in Process Engineering | W | 4 credits | 2V + 2U | F. Donat, C. Müller | |
Abstract | Overview of process engineering, reactions, balances and residence time analysis; overview of the thermal separation processes; equilibria for multiphase systems; introduction into mechanical process engineering and particle technology | |||||
Learning objective | To expound fundamentals in process engineering | |||||
Content | Overview of process engineering, reactions, balances and residence time analysis; overview of the thermal separation processes; equilibria for multiphase systems; introduction into mechanical process engineering and particle technology | |||||
Lecture notes | script in German available | |||||
Mechatronics Focus Coordinator: Prof. Bradley Nelson To achieve the 20 credits for Focus Specialization Mechatronics, 151-0640-00L Studies on Mechatronics is compulsory. | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
151-0640-00L | Studies on Mechatronics This course is not available to incoming exchange students. | O | 5 credits | 11A | Supervisors | |
Abstract | Overview of Mechatronics topics and study subjects. Identification of minimum 10 pertinent refereed articles or works in the literature in consultation with supervisor or instructor. After 4 weeks, submission of a 2-page proposal outlining the value, state-of-the art and study plan based on these articles. After feedback on the substance and technical writing by the instructor, project commences. | |||||
Learning objective | The students are familiar with the challenges of the fascinating and interdisciplinary field of Mechatronics and Mikrosystems. They are introduced in the basics of independent non-experimental scientific research and are able to summarize and to present the results efficiently. | |||||
Content | The students work independently on a study of selected topics in the field of Mechatronics or Microsystems. They start with a selection of scientific papers to continue literature research. The results (e.g. state-of-the-art, methods) are evaluated with respect to predefined criteria. Then the results are presented in an oral presentation and summarized in a report, which takes the discussion of the presentation into account. | |||||
Literature | will be available | |||||
151-0509-00L | Microscale Acoustofluidics Number of participants limited to 50. | W | 4 credits | 3G | J. Dual | |
Abstract | In this lecture the basics as well as practical aspects (from modelling to design and fabrication ) are described from a solid and fluid mechanics perspective with applications to microsystems and lab on a chip devices. | |||||
Learning objective | Understanding acoustophoresis, the design of devices and potential applications | |||||
Content | Linear and nonlinear acoustics, foundations of fluid and solid mechanics and piezoelectricity, Gorkov potential, numerical modelling, acoustic streaming, applications from ultrasonic microrobotics to surface acoustic wave devices | |||||
Lecture notes | Yes, incl. Chapters from the Tutorial: Microscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015 | |||||
Literature | Microscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015 | |||||
Prerequisites / Notice | Solid and fluid continuum mechanics. Notice: The exercise part is a mixture of presentation, lab sessions ( both compulsary) and hand in homework. | |||||
151-0575-01L | Signals and Systems | W | 4 credits | 2V + 2U | A. Carron | |
Abstract | Signals arise in most engineering applications. They contain information about the behavior of physical systems. Systems respond to signals and produce other signals. In this course, we explore how signals can be represented and manipulated, and their effects on systems. We further explore how we can discover basic system properties by exciting a system with various types of signals. | |||||
Learning objective | Master the basics of signals and systems. Apply this knowledge to problems in the homework assignments and programming exercise. | |||||
Content | Discrete-time signals and systems. Fourier- and z-Transforms. Frequency domain characterization of signals and systems. System identification. Time series analysis. Filter design. | |||||
Lecture notes | Lecture notes available on course website. | |||||
Prerequisites / Notice | Control Systems I is helpful but not required. | |||||
151-0601-00L | Theory of Robotics and Mechatronics | W | 4 credits | 3G | P. Korba, S. Stoeter | |
Abstract | This course provides an introduction and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control. | |||||
Learning objective | Robotics is often viewed from three perspectives: perception (sensing), manipulation (affecting changes in the world), and cognition (intelligence). Robotic systems integrate aspects of all three of these areas. This course provides an introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control. | |||||
Content | An introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control. | |||||
Lecture notes | available. | |||||
151-0604-00L | Microrobotics | W | 4 credits | 3G | B. Nelson, N. Shamsudhin | |
Abstract | Microrobotics is an interdisciplinary field that combines aspects of robotics, micro and nanotechnology, biomedical engineering, and materials science. The aim of this course is to expose students to the fundamentals of this emerging field. Throughout the course, the students apply these concepts in assignments. The course concludes with an end-of-semester examination. | |||||
Learning objective | The objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the field. | |||||
Content | Main topics of the course include: - Scaling laws at micro/nano scales - Electrostatics - Electromagnetism - Low Reynolds number flows - Observation tools - Materials and fabrication methods - Applications of biomedical microrobots | |||||
Lecture notes | The powerpoint slides presented in the lectures will be made available as pdf files. Several readings will also be made available electronically. | |||||
Prerequisites / Notice | The lecture will be taught in English. | |||||
151-0621-00L | Microsystems I: Process Technology and Integration | W | 6 credits | 3V + 3U | M. Haluska, C. Hierold | |
Abstract | Students are introduced to the fundamentals of semiconductors, the basics of micromachining and silicon process technology and will learn about the fabrication of microsystems and -devices by a sequence of defined processing steps (process flow). | |||||
Learning objective | Students are introduced to the basics of micromachining and silicon process technology and will understand the fabrication of microsystem devices by the combination of unit process steps ( = process flow). | |||||
Content | - Introduction to microsystems technology (MST) and micro electro mechanical systems (MEMS) - Basic silicon technologies: Thermal oxidation, photolithography and etching, diffusion and ion implantation, thin film deposition. - Specific microsystems technologies: Bulk and surface micromachining, dry and wet etching, isotropic and anisotropic etching, beam and membrane formation, wafer bonding, thin film mechanical properties. Application of selected technologies will be demonstrated on case studies. | |||||
Lecture notes | Handouts (available online) | |||||
Literature | - S.M. Sze: Semiconductor Devices, Physics and Technology - W. Menz, J. Mohr, O.Paul: Microsystem Technology - Hong Xiao: Introduction to Semiconductor Manufacturing Technology - M. J. Madou: Fundamentals of Microfabrication and Nanotechnology, 3rd ed. - T. M. Adams, R. A. Layton: Introductory MEMS, Fabrication and Applications | |||||
Prerequisites / Notice | Prerequisites: Physics I and II | |||||
227-0113-00L | Power Electronics | W | 6 credits | 4G | J. W. Kolar | |
Abstract | Fields of application of power electronic systems. Principle of operation of basic pulse-width modulated and line-commutated power electronic converters, analysis of the operating behavior and of the control oriented behavior, converter design. Reduction of effects of line-commutated rectifiers on the mains, electromagnetic compatibility. | |||||
Learning objective | Fields of application of power electronic systems. Principle of operation of basic pulse-width modulated and line-commutated power electronic converters, analysis of the operating behavior and of the controloriented behavior, converter design. Reduction of effects of line-commutated rectifiers on the mains, electromagnetic compatibility. | |||||
Content | Basic structure of power electronic systems, applications. DC/DC converters, high frequency isolation, control oriented modeling / state-space averaging and PWM switch model. Power semiconductors, non-idealities, cooling. Magnetic components, skin and proximity effect, design. Electromagnetic compatibility. Single-phase diode bridge with capacitive smoothing, effects on the mains, power factor correction / PWM rectifier. Pulse-width modulated single-phase and three-phase full bridge converter with impressed DC voltage, modulation schemes, space vector calculus. Line-commutated single-phase full bridge with impressed output current, commutation, phase-control, inverter operation, commutation failure. Line-commutated three-phase full bridge converter, impressed output voltage, impressed output current / phase-control. Parallel connection of three-phase line-commutated thyristor circuits, inter-phase transformer. Anti-parallel connection of three-phase line-commutated thyristor bridge circuits, four-quadrant DC motor drive. Load-resonant converters, state plane analysis. | |||||
Lecture notes | Lecture notes and associated exercises including correct answers, simulation program for interactive self-learning including visualization/animation features. | |||||
Prerequisites / Notice | Prerequisites: Basic knowledge of electric circuit analysis and signal theory. | |||||
227-0124-00L | Embedded Systems | W | 6 credits | 4G | J. Beutel | |
Abstract | An embedded system is some combination of computer hardware and software, either fixed in capability or programmable, that is designed for a specific function or for specific functions within a larger system. The course covers theoretical and practical aspects of embedded system design and includes a series of lab sessions. | |||||
Learning objective | Understanding specific requirements and problems arising in embedded system applications. Understanding architectures and components, their hardware-software interfaces, the memory architecture, communication between components, embedded operating systems, real-time scheduling theory, shared resources, low-power and low-energy design as well as hardware architecture synthesis. Using the formal models and methods in embedded system design in practical applications using the programming language C, the operating system FreeRTOS, a commercial embedded system platform and the associated design environment. | |||||
Content | An embedded system is some combination of computer hardware and software, either fixed in capability or programmable, that is designed for a specific function or for specific functions within a larger system. For example, they are part of industrial machines, agricultural and process industry devices, automobiles, medical equipment, cameras, household appliances, airplanes, sensor networks, internet-of-things, as well as mobile devices. The focus of this lecture is on the design of embedded systems using formal models and methods as well as computer-based synthesis methods. Besides, the lecture is complemented by laboratory sessions where students learn to program in C, to base their design on the embedded operating systems FreeRTOS, to use a commercial embedded system platform including sensors, and to edit/debug via an integrated development environment. Specifically the following topics will be covered in the course: Embedded system architectures and components, hardware-software interfaces and memory architecture, software design methodology, communication, embedded operating systems, real-time scheduling, shared resources, low-power and low-energy design, hardware architecture synthesis. More information is available at https://www.tec.ee.ethz.ch/education/lectures/embedded-systems.html . | |||||
Lecture notes | The following information will be available: Lecture material, publications, exercise sheets and laboratory documentation at https://www.tec.ee.ethz.ch/education/lectures/embedded-systems.html . | |||||
Literature | P. Marwedel: Embedded System Design, Springer, ISBN 978-3-319-56045-8, 2018. G.C. Buttazzo: Hard Real-Time Computing Systems. Springer Verlag, ISBN 978-1-4614-0676-1, 2011. Edward A. Lee and Sanjit A. Seshia: Introduction to Embedded Systems, A Cyber-Physical Systems Approach, Second Edition, MIT Press, ISBN 978-0-262-53381-2, 2017. M. Wolf: Computers as Components – Principles of Embedded System Design. Morgan Kaufman Publishers, ISBN 978-0-128-05387-4, 2016. | |||||
Prerequisites / Notice | Prerequisites: Basic knowledge in computer architectures and programming. | |||||
227-0517-00L | Electrical Drive Systems II Does not take place this semester. This course will be replaced by 227-0518-10L "Design and Control of Electric Machines" as of spring semester 2020. | W | 6 credits | 4G | to be announced | |
Abstract | In the course "Drive System II" the power semiconductors are repeated. The creation of converters based on the combination of switches/cells and based topologies is explained. Another main focus is on the 3-level inverter with its switching and transfer functions. Further topics are the control of the synchronous machine, of line-side converters and issues with converter-fed machines | |||||
Learning objective | The students establish a deeper understanding in regards of the design of the main components of an electrical drive system. They establish knowledge on the most important interaction with the grid and the machine and their related high dynamic control. | |||||
Content | Converter topologies (switch or cell based), multi-pulse diode rectifiers, system aspects of transfomer and electrical machines, 3-level inverter with its switching and transfer functions, grid side harmonics, modeling and control of synchronous machines (including permanent magnet machines), control of line-side converters, reflection effects with power cables, winding isolation and bearing stress. Field trip to ABB Semionductors. | |||||
Lecture notes | Skript can be downloaded from Ilias | |||||
Literature | Skript of lecture; References in skript to related technical publications and books | |||||
Prerequisites / Notice | Prerequisites: Electrical Drive Systems I (recommended), Basics in electrical engineering, power electronics, automation and mechatronics | |||||
227-0517-10L | Fundamentals of Electric Machines | W | 6 credits | 4G | D. Bortis | |
Abstract | This course introduces to different electric machine concepts and provides a deeper understanding of their detailed operating principles. Different aspects arising in the design of electric machines, like dimensioning of magnetic and electric circuits as well as consideration of mechanical and thermal constraints, are investigated. The exercises are used to consolidate the concepts discussed. | |||||
Learning objective | The objective of this course is to convey knowledge on the operating principles of different types of electric machines. Further objectives are to evaluate machine types for given specification and to acquire the ability to perform a rough design of an electrical machine while considering the versatile aspects with respect to magnetic, electrical, mechanical and thermal limitations. Exercises are used to consolidate the presented theoretical concepts. | |||||
Content | ‐ Fundamentals in magnetic circuits and electromechanical energy conversion. ‐ Force and torque calculation. ‐ Operating principles, magnetic and electric modelling and design of different electric machine concepts: DC machine, AC machines (permanent magnet synchronous machine, reluctance machine and induction machine). ‐ Complex space vector notation, rotating coordinate system (dqtransformation). ‐ Loss components in electric machines, scaling laws of electromechanical actuators. ‐ Mechanical and thermal modelling. | |||||
Lecture notes | Lecture notes and associated exercises including correct answers | |||||
Prerequisites / Notice | Prerequisites: Introductory course on power electronics. | |||||
376-1504-00L | Physical Human Robot Interaction (pHRI) | W | 4 credits | 2V + 2U | R. Gassert, O. Lambercy | |
Abstract | This course focuses on the emerging, interdisciplinary field of physical human-robot interaction, bringing together themes from robotics, real-time control, human factors, haptics, virtual environments, interaction design and other fields to enable the development of human-oriented robotic systems. | |||||
Learning objective | The objective of this course is to give an introduction to the fundamentals of physical human robot interaction, through lectures on the underlying theoretical/mechatronics aspects and application fields, in combination with a hands-on lab tutorial. The course will guide students through the design and evaluation process of such systems. By the end of this course, you should understand the critical elements in human-robot interactions - both in terms of engineering and human factors - and use these to evaluate and de- sign safe and efficient assistive and rehabilitative robotic systems. Specifically, you should be able to: 1) identify critical human factors in physical human-robot interaction and use these to derive design requirements; 2) compare and select mechatronic components that optimally fulfill the defined design requirements; 3) derive a model of the device dynamics to guide and optimize the selection and integration of selected components into a functional system; 4) design control hardware and software and implement and test human-interactive control strategies on the physical setup; 5) characterize and optimize such systems using both engineering and psychophysical evaluation metrics; 6) investigate and optimize one aspect of the physical setup and convey and defend the gained insights in a technical presentation. | |||||
Content | This course provides an introduction to fundamental aspects of physical human-robot interaction. After an overview of human haptic, visual and auditory sensing, neurophysiology and psychophysics, principles of human-robot interaction systems (kinematics, mechanical transmissions, robot sensors and actuators used in these systems) will be introduced. Throughout the course, students will gain knowledge of interaction control strategies including impedance/admittance and force control, haptic rendering basics and issues in device design for humans such as transparency and stability analysis, safety hardware and procedures. The course is organized into lectures that aim to bring students up to speed with the basics of these systems, readings on classical and current topics in physical human-robot interaction, laboratory sessions and lab visits. Students will attend periodic laboratory sessions where they will implement the theoretical aspects learned during the lectures. Here the salient features of haptic device design will be identified and theoretical aspects will be implemented in a haptic system based on the haptic paddle (Link), by creating simple dynamic haptic virtual environments and understanding the performance limitations and causes of instabilities (direct/virtual coupling, friction, damping, time delays, sampling rate, sensor quantization, etc.) during rendering of different mechanical properties. | |||||
Lecture notes | Will be distributed through the document repository before the lectures. http://www.relab.ethz.ch/education/courses/phri.html | |||||
Literature | Abbott, J. and Okamura, A. (2005). Effects of position quantization and sampling rate on virtual-wall passivity. Robotics, IEEE Transactions on, 21(5):952 - 964. Adams, R. and Hannaford, B. (1999). Stable haptic interaction with virtual environments. Robotics and Automation, IEEE Transactions on, 15(3):465 -474. Buerger, S. and Hogan, N. (2007). Complementary stability and loop shaping for improved human ndash;robot interaction. Robotics, IEEE Transactions on, 23(2):232 -244. Burdea, G. and Brooks, F. (1996). Force and touch feedback for virtual reality. John Wiley & Sons New York NY. Colgate, J. and Brown, J. (1994). Factors affecting the z-width of a haptic display. In Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference on, pages 3205 -3210 vol.4. Diolaiti, N., Niemeyer, G., Barbagli, F., and Salisbury, J. (2006). Stability of haptic rendering: Discretization, quantization, time delay, and coulomb effects. Robotics, IEEE Transactions on, 22(2):256 -268. Gillespie, R. and Cutkosky, M. (1996). Stable user-specific haptic rendering of the virtual wall. In Proceedings of the ASME International Mechanical Engineering Congress and Exhibition, volume 58, pages 397-406. Hannaford, B. and Ryu, J.-H. (2002). Time-domain passivity control of haptic interfaces. Robotics and Automation, IEEE Transactions on, 18(1):1 -10. Hashtrudi-Zaad, K. and Salcudean, S. (2001). Analysis of control architectures for teleoperation systems with impedance/admittance master and slave manipulators. The International Journal of Robotics Research, 20(6):419. Hayward, V. and Astley, O. (1996). Performance measures for haptic interfaces. In ROBOTICS RESEARCH-INTERNATIONAL SYMPOSIUM-, volume 7, pages 195-206. Citeseer. Hayward, V. and Maclean, K. (2007). Do it yourself haptics: part i. Robotics Automation Magazine, IEEE, 14(4):88 -104. Leskovsky, P., Harders, M., and Szeekely, G. (2006). Assessing the fidelity of haptically rendered deformable objects. In Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2006 14th Symposium on, pages 19 - 25. MacLean, K. and Hayward, V. (2008). Do it yourself haptics: Part ii [tutorial]. Robotics Automation Magazine, IEEE, 15(1):104 -119. Mahvash, M. and Hayward, V. (2003). Passivity-based high-fidelity haptic rendering of contact. In Robotics and Automation, 2003. Proceedings. ICRA '03. IEEE International Conference on, volume 3, pages 3722 - 3728 vol.3. Mehling, J., Colgate, J., and Peshkin, M. (2005). Increasing the impedance range of a haptic display by adding electrical damping. In Eurohaptics Conference, 2005 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2005. World Haptics 2005. First Joint, pages 257 - 262. Okamura, A., Richard, C., and Cutkosky, M. (2002). Feeling is believing: Using a force-feedback joystick to teach dynamic systems. JOURNAL OF ENGINEERING EDUCATION-WASHINGTON-, 91(3):345-350. O'Malley, M. and Goldfarb, M. (2004). The effect of virtual surface stiffness on the haptic perception of detail. Mechatronics, IEEE/ASME Transactions on, 9(2):448 -454. Richard, C. and Cutkosky, M. (2000). The effects of real and computer generated friction on human performance in a targeting task. In Proceedings of the ASME Dynamic Systems and Control Division, volume 69, page 2. Salisbury, K., Conti, F., and Barbagli, F. (2004). Haptic rendering: Introductory concepts. Computer Graphics and Applications, IEEE, 24(2):24-32. Weir, D., Colgate, J., and Peshkin, M. (2008). Measuring and increasing z-width with active electrical damping. In Haptic interfaces for virtual environment and teleoperator systems, 2008. haptics 2008. symposium on, pages 169 -175. Yasrebi, N. and Constantinescu, D. (2008). Extending the z-width of a haptic device using acceleration feedback. Haptics: Perception, Devices and Scenarios, pages 157-162. | |||||
Prerequisites / Notice | Notice: The registration is limited to 26 students There are 4 credit points for this lecture. The lecture will be held in English. The students are expected to have basic control knowledge from previous classes. http://www.relab.ethz.ch/education/courses/phri.html | |||||
151-0135-00L | Additional Case for the Focus Specialization Exclusive for D-MAVT Bachelor's students in Focus Specialization. For enrollment, please contact the D-MAVT Student Administration. | W | 1 credit | 2A | Professors | |
Abstract | Independent studies on a defined field within the selected Focus Specialization. | |||||
Learning objective | Independent studies on a defined field within the selected Focus Specialization. | |||||
Microsystems and Nanoscale Engineering Focus Coordinator: Prof. Christofer Hierold | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
151-0621-00L | Microsystems I: Process Technology and Integration | W+ | 6 credits | 3V + 3U | M. Haluska, C. Hierold | |
Abstract | Students are introduced to the fundamentals of semiconductors, the basics of micromachining and silicon process technology and will learn about the fabrication of microsystems and -devices by a sequence of defined processing steps (process flow). | |||||
Learning objective | Students are introduced to the basics of micromachining and silicon process technology and will understand the fabrication of microsystem devices by the combination of unit process steps ( = process flow). | |||||
Content | - Introduction to microsystems technology (MST) and micro electro mechanical systems (MEMS) - Basic silicon technologies: Thermal oxidation, photolithography and etching, diffusion and ion implantation, thin film deposition. - Specific microsystems technologies: Bulk and surface micromachining, dry and wet etching, isotropic and anisotropic etching, beam and membrane formation, wafer bonding, thin film mechanical properties. Application of selected technologies will be demonstrated on case studies. | |||||
Lecture notes | Handouts (available online) | |||||
Literature | - S.M. Sze: Semiconductor Devices, Physics and Technology - W. Menz, J. Mohr, O.Paul: Microsystem Technology - Hong Xiao: Introduction to Semiconductor Manufacturing Technology - M. J. Madou: Fundamentals of Microfabrication and Nanotechnology, 3rd ed. - T. M. Adams, R. A. Layton: Introductory MEMS, Fabrication and Applications | |||||
Prerequisites / Notice | Prerequisites: Physics I and II | |||||
151-0643-00L | Studies on Micro and Nano Systems This course is not available to incoming exchange students. | W+ | 5 credits | 11A | Supervisors | |
Abstract | The students get familiarized with the challenges of the fascinating and interdisciplinary field of Micro- and Nanosystems. They are introduced to the basics of independent non-experimental scientific research and are able to summarize and to present the results efficiently. | |||||
Learning objective | The students get familiarized with the challenges of the fascinating and interdisciplinary field of Micro- and Nanosystems. They are introduced to the basics of independent non-experimental scientific research and are able to summarize and to present the results efficiently. | |||||
Content | Students work independently on a study of selected topics in the field of Micro- and Nanosystems. They start with a selection of scientific papers, and continue with an independent iterature research. The results (e.g. state-of-the-art, methods) are evaluated with respect to predefined criteria. Then the results are presented in an oral presentation and summarized in a report, which takes the discussion of the presentation into account. | |||||
Literature | Literature will be provided |
- Page 1 of 4 All