Search result: Catalogue data in Autumn Semester 2019
Environmental Engineering Bachelor ![]() | ||||||
![]() | ||||||
![]() ![]() | ||||||
![]() ![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|
102-0215-00L | Urban Water Management II ![]() | O | 4 credits | 2G | M. Maurer, P. Staufer | |
Abstract | Technical networks in urban water engineering. Water supply: Optimization, water hammer, corrosion and hygiene. Urban drainage: Urban hydrology, non stationary flow, pollutant transport, infiltration of rainwater, wet weather pollution control. General planning, organisation and operation of regional drainage systems. | |||||
Learning objective | Consolidation of the basic procedures for design and operation of technical networks in water engineering. | |||||
Content | Demand Side Management versus Supply Side Management Optimierung von Wasserverteilnetzen Druckstösse Kalkausfällung, Korrosion von Leitungen Hygiene in Verteilsystemen Siedlungshydrologie: Niederschlag, Abflussbildung Instationäre Strömungen in Kanalisationen Stofftransport in der Kanalisation Einleitbedingungen bei Regenwetter Versickerung von Regenwasser Generelle Entwässerungsplanung (GEP) | |||||
Lecture notes | Written material and copies of the overheads will be available. | |||||
Prerequisites / Notice | Prerequisite: Introduction to Urban Water Management | |||||
102-0455-01L | Groundwater I | O | 4 credits | 3G | J. Jimenez-Martinez, M. Willmann | |
Abstract | The course provides a quantitative introduction to groundwater flow and contaminant transport. | |||||
Learning objective | Understanding of the basic concepts on groundwater flow and contaminant transport processes. Formulation and solving of practical problems. | |||||
Content | Properties of porous and fractured media, Darcy’s law, flow equation, stream functions, interpretation of pumping tests, transport processes, transport equation, analytical solutions for transport, numerical methods: finite differences method, aquifers remediation, case studies. | |||||
Lecture notes | Script and collection of problems available | |||||
Literature | J. Bear, Hydraulics of Groundwater, McGraw-Hill, New York, 1979 K. de Ridder, Untersuchung und Anwendung von Pumpversuchen, Verl. R. Müller, Köln, 1970 P.A. Domenico, F.W. Schwartz, Physical and Chemical Hydrogeology, J. Wilson & Sons, New York, 1990 R.A. Freeze, J.A. Cherry, Groundwater, Prentice-Hall, New Jersey, 1979 W. Kinzelbach, R. Rausch, Grundwassermodellierung, Gebrüder Bornträger, Stuttgart, 1995 | |||||
102-0635-01L | Air Pollution Control ![]() | O | 6 credits | 4G | J. Wang, B. Buchmann | |
Abstract | The lecture provides in the first part an introduction to the formation of air pollutants by technical processes, the emission of these chemicals into the atmosphere and their impact on air quality. The second part covers different strategies and techniques for emission reduction. The basic knowledge is deepened by the discussion of specific air pollution problems of today's society. | |||||
Learning objective | The students gain general knowledge of the technical processes resulting in air pollution and study the methods used for air pollution control. The students can identify major air pollution sources and understand the methods for measuring pollutants, collecting and analyzing data. The students can suggest and evaluate possible control methods and equipment, design control systems and estimate their efficiency and efforts. The students know the different strategies of air pollution control and are familiar with their scientific fundamentals. They are able to incorporate goals concerning air quality into their engineering work. | |||||
Content | Part 1 Emission, Immission, Transmission Fluxes of pollutants and their environmental impact: - physical and chemical processes leading to emission of pollutants - mass and energy of processes - Emission measurement techniques and concepts - quantification of emissions from individual and aggregated sources - extent and development of the emissions (Switzerland and global) - propagation and transport of pollutants (transmission) - meteorological parameters influencing air pollution dispersion - deterministic and stochastic models, describing air pollution dispersion - dispersion models (Gaussian model, box model, receptor model) - measurement concepts for ambient air (immission level) - extent and development of ambient air mixing ratios - goal and instrument of air pollution control Part 2 Air Pollution Control Technologies The reduction of the formation of pollutants is done by modifying the processes (pro-cessintegrated measures) and by different engineering operations for the cleaning of waste gas (downstream pollution control). It will be demonstrated, that the variety of these procedures can be traced back to the application of a few basic physical and chemical principles. Procedures for the removal of particles (inertial separator, filtration, electrostatic precipitators, scrubbers) with their different mechanisms (field forces, impaction and diffusion processes) and the modelling of these mechanisms. Procedures for the removal of gaseous pollutants and the description of the driving forces involved, as well as the equilibrium and the kinetics of the relevant processes (absorption, adsorption as well as thermal, catalytic and biological conversions). Discussion of the technical possibilities to solve the actual air pollution problems. | |||||
Lecture notes | Brigitte Buchmann, Air pollution control, Part I Jing Wang, Air pollution control, Part II Lecture slides and exercises | |||||
Literature | List of literature included in script | |||||
Prerequisites / Notice | College lectures on basic physics, chemistry and mathematics. Language of instruction: In German or in English. | |||||
102-0675-00L | Earth Observation | O | 4 credits | 3G | I. Hajnsek, E. Baltsavias | |
Abstract | The aim of the course is to provide the fundamental knowledge about earth observation sensors, techniques and methods for bio/geophysical environmental parameter estimation. | |||||
Learning objective | The aim of the course is to provide the fundamental knowledge about earth observation sensors, techniques and methods for bio/geophysical environmental parameter estimation. Students should know at the end of the course: 1. Basics of measurement principle 2. Fundamentals of image acquisition 3. Basics of the sensor-specific geometries 4. Sensor-specific determination of environmental parameters | |||||
Content | Die Lehrveranstaltung gibt einen Einblick in die heutige Erdbeoachtung mit dem follgenden skizzierten Inhalt: 1. Einführung in die Fernerkundung von Luft- und Weltraum gestützen Systemen 2. Einführung in das Elektromagnetische Spektrum 3. Einführung in optische Systeme (optisch und hyperspektral) 4. Einführung in Mikrowellen-Technik (aktiv und passiv) 5. Einführung in atmosphärische Systeme (meteo und chemisch) 6. Einführung in die Techniken und Methoden zur Bestimmung von Umweltparametern 7. Einführung in die Anwendungen zur Bestimmung von Umweltparametern in der Hydrologie, Glaziologie, Forst und Landwirtschaft, Geologie und Topographie | |||||
Lecture notes | Folien zu jeden Vorlesungsblock werden zur Verfügung gestellt. | |||||
Literature | Ausgewählte Literatur wird am Anfang der Vorlesung vorgestellt. | |||||
![]() ![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
101-0031-02L | Business Administration ![]() | O | 2 credits | 2V | J.‑P. Chardonnens | |
Abstract | Introduction to business administration Principles of accounting and financial management Financial planning and capital budgeting of projects Costing systems by corporations | |||||
Learning objective | Prepare and analyze the financial statements of organizations Establish budget and determine profitability of investment Understand the major costing systems Perform some product calculations | |||||
Content | Overview in business administration Financial Accounting - Balance sheet, income statement - Accounts, double-entry bookkeeping - Year-end closing and financial statements Financial Management - Financial statement analysis - Financial planning - Investment decisions Management Accounting - Full costing and marginal costing - Product costing - Management decisions | |||||
851-0723-00L | Environmental Law I: Fundamentals and Concepts ![]() Only for Environmental Engineering BSc | O | 2 credits | 2V | C. Jäger | |
Abstract | This class introduces students to the fundamentals of legal systems, focusing on environmental law. It covers the fundamentals of constitutional and administrative law, as opposed to private and criminal law. The class will focus on concepts, terminology and procedures of Swiss environmental law and selected aspects of European environmental law, supplemented through case studies. | |||||
Learning objective | Students learn fundamental structures of the legal system, understand core concepts and selected problems of public law, focusing on Swiss and European environmental law. These insights can be applied in further law courses, in particular in the course "Environmental law: Areas and Case Studies." | |||||
Content | Die Vorlesung beginnt mit einer allgemeinen Einführung in das Recht (was ist Recht?) und situiert das Umweltrecht in der schweizerischen Rechtsordnung. Anschliessend folgen die Darstellung der Rechtsquellen sowie die juristische Methodenlehre, insbesondere die Auslegung und Anwendung von Rechtsnormen. Darauf aufbauend behandelt die Vorlesung die Ziele und Grundsätze des Umweltrechts, zeigt die rechtlichen Handlungsformen auf, insbesondere die Verfügung. Die Studierenden lernen die grundlegenden Schritte der Rechtsanwendung bzw. eines Verwaltungsverfahrens kennen. Sie erhalten auch einen kurzen Überblick über das Bau- und Planungsrecht. Ein Block zum europäischen Umweltrecht rundet die Vorlesung thematisch ab. Integrierte Fallbeispiele und Falldiskussionen zeigen die Praxisrelevanz auf und bieten Gelegenheit zur aktiven Mitarbeit der Studierenden. | |||||
Lecture notes | Christoph Jäger/Andreas Bühler, Schweizerisches Umweltrecht, Bern 2016 | |||||
Literature | Weitere Literaturangaben folgen in der Vorlesung | |||||
101-0515-00L | Project Management | O | 2 credits | 2G | C. G. C. Marxt | |
Abstract | The course gives a detailed introduction on various aspects of professional project management out of theory and practice. Established concepts and methods for project organization, planning, execution and evaluation are introduced and major challenges discussed. The course includes an introduction on specialized project management software as well as agile project management concepts. | |||||
Learning objective | Projects are not only the base of work in modern enterprises but also the primary type of cooperation with customers. Students of ETH will often work in or manage projects in the course of their career. Good project management knowledge is not only a guarantee for individual, but also for company wide success. The goal of this course is to give a detailed introduction into project management. The students should learn to plan and execute a project. | |||||
Content | Project planning (aims, appointments, capacities, efforts and costs), project organization, scheduling and risk analysis, project execution, supervision and control, project evaluation, termination and documentation, conflict management, multinational project management, IT support as well as agile project management methods such as SCRUM. | |||||
Lecture notes | No. The lecture slides and other additional material will be available for download from Moodle a week before each class. | |||||
![]() ![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
102-0515-01L | Environmental Engineering Seminars ![]() ![]() | O | 3 credits | 3S | J. Wang, P. Burlando, I. Hajnsek, S. Hellweg, M. Holzner, M. Maurer, P. Molnar, E. Morgenroth, R. Stocker | |
Abstract | The course is organized in the form of seminars held by the students. Topics selected from the core disciplines of the curriculum (water resources, urban water engineering, material fluxes, waste technology, air polution, earth observation) are discussed in the class on the basis of scientific papers that are illustrated and critically reviewed by the students. | |||||
Learning objective | Learn about recent research results in environmental engineering and analyse practical applications in environmental engineering. |
Page 1 of 1