Search result: Catalogue data in Autumn Semester 2019

Environmental Engineering Bachelor Information
3. Semester
Compulsory Courses 3. Semester
Examination Block 1
402-0023-01LPhysicsO7 credits5V + 2US. Johnson
AbstractThis course gives an overview of important concepts in classical dynamics, thermodynamics, electromagnetism, quantum physics, atomic physics, and special relativity. Emphasis is placed on demonstrating key phenomena using experiments, and in making connections between basic research and applications.
ObjectiveThe goal of this course is to make students able to explain and apply the basic principles and methodology of physics to problems of interest in modern science and engineering. An important component of this is learning how to solve new, complex problems by breaking them down into parts and applying simplifications. A secondary goal is to provide to students an overview of important subjects in both classical and modern physics.
ContentOscillations and waves in matter

Thermodynamics (temperature, heat, equations of state, laws of thermodynamics, entropy, transport)

Electromagnetism (electrostatics, magnetostatics, circuits, Maxwell's Equations, electromagnetic waves, induction, electromagnetic properties of materials)

Overview of quantum and atomic physics

Introduction to special relativity
Lecture notesLecture notes and exercise sheets will be distributed via Moodle
LiteratureP.A. Tipler and G. Mosca, Physics for scientists and engineers, W.H. Freeman and Company, New York
101-0203-01LHydraulics IO5 credits3V + 1UR. Stocker
AbstractThe course teaches the basics of hydromechanics, relevant for civil and environemental engineers.
ObjectiveFamiliarization with the basics of hydromechanics of steady state flows
ContentProperties of water, hydrostatics, stability of floating bodies, continuity, Euler equation of motion, Navier-Stokes equations, similarity, Bernoulli principle, momentum equation for finite volumes, potential flows, ideal fluids vs. real fluids, boundary layer, pipe flow, open channel flow, flow measurements, demonstration experiments in the lecture hall
Lecture notesScript and collection of previous problems
LiteratureBollrich, Technische Hydromechanik 1, Verlag Bauwesen, Berlin
103-0233-01LGIS I (for Environmental Engineers)O3 credits2GP. Kiefer
AbstractFundamentals of geoinformation technologies: spatial data modeling, metrics & topology, vector and raster data, thematic data, spatial queries and analysis, spatial databases; group project with GIS software
ObjectiveKnowing the fundamentals of geoinformation technologies for the realization, application and operation of geographic information systems in engineering projects.
ContentEinführung GIS & GIScience
Konzeptionelles Modell & Datenschema
Vektorgeometrie & Topologie
Rastergeometrie und -algebra
Thematische Daten
Räumliche Abfragen & Analysen
Lecture notesVorlesungspräsentationen werden digital zur Verfügung gestellt.
LiteratureBartelme, N. (2005). Geoinformatik - Modelle, Strukturen, Funktionen (4. Auflage). Berlin: Springer.
Bill, R. (2016). Grundlagen der Geo-Informationssysteme (6. Auflage): Wichmann.
Worboys, M., & Duckham, M. (2004). GIS - A Computing Perspective (2nd Edition). Boca Raton, FL: CRC Press.
102-0293-00LHydrology Information O3 credits2GP. Burlando
AbstractThe course introduces the students to engineering hydrology. It covers first physical hydrology, that is the description and the measurement of hydrological processes (precipitation, interception, evapotranspiration, runoff, erosion, and snow), and it introduces then the basic mathematical models of the single processes and of the rainfall-runoff transformation, thereby including flood analysis.
ObjectiveKnow the main features of engineering hydrology. Apply methods to estimate hydrological variables for dimensioning hydraulic structures and managing water ressources.
ContentThe hydrological cycle: global water resources, water balance, space and time scales of hydrological processes.

Precipitation: mechanisms of precipitation formation, precipitation measurements, variability of precipitation in space and time, precipitation regimes, point/basin precipitation, isohyetal method, Thiessen polygons, storm rainfall, design hyetograph.

Interception: measurement and estimation.

Evaporation and evapotranspiration: processes, measurement and estimation, potential and actual evapotranspiration, energy balance method, empirical methods.

Infiltration: measurement, Horton’s equation, empirical and conceptual models, phi-index and percentage method, SCS-CN method.

Surface runoff and subsurface flow: Hortonian and Dunnian surface runoff, streamflow measurement, streamflow regimes, annual hydrograph, flood hydrograph analysis – baseflow separation, flow duration curve.

Basin characteristics: morphology, topographic and phreatic divide, hypsometric curve, slope, drainage density.

Rainfall-runoff models (R-R): rationale, linear model of rainfall-runoff transformation, concept of the instantaneous unit hydrograph (IUH), linear reservoir, Nash model.

Flood estimation methods: flood frequency analysis, deterministic methods, probabilistic methods (e.g. statistical regionalisation, indirect R-R methods for flood estimation, rational method).

Erosion and sediment transport: watershed scale erosion, soil erosion by water, estimation of surface erosion, sediment transport.

Snow (and ice) hydrology: snow characteristic variables and measurements, estimation of snowmelt processes by the energy budget equation and conceptual melt models (temperature index method and degree-day method), snowmelt runoff.
Lecture notesThe lecture notes as well as the lecture presentations and handouts may be downloaded from the website of the Chair of Hydrology and Water Resources Management.
LiteratureChow, V.T., Maidment, D.R. and Mays, L.W. (1988). Applied Hydrology, New York, McGraw-Hill.
Dingman, S.L. (2002). Physical Hydrology, 2nd ed., Upper Saddle River, N.J., Prentice Hall.
Dyck, S. und Peschke, G. (1995). Grundlagen der Hydrologie, 3. Aufl., Berlin, Verlag für Bauwesen.
Maidment, D.R. (1993). Handbook of Hydrology, New York, McGraw-Hill.
Maniak, U. (1997). Hydrologie und Wasserwirtschaft, eine Einführung für Ingenieure, Springer, Berlin.
Manning, J.C. (1997). Applied Principles of Hydrology, 3rd ed., Upper Saddle River, N.J., Prentice Hall.
Prerequisites / NoticeKnowledge of statistics is a prerequisite. The required theoretical background, which is needed for understanding part of the lectures and performing part of the assignments, may be summarised as follows:
Elementary data processing: hydrological measurements and data, data visualisation (graphical representation and numerical parameters).
Frequency analysis: hydrological data as random variables, return period, frequency factor, probability paper, probability distribution fitting, parametric and non-parametric tests, parameter estimation.
701-0243-01LBiology III: Essentials of EcologyO3 credits2VC. Buser Moser
AbstractThis lecture presents an introduction to ecology. It includes basic ecological concepts and the most important levels of complexity in ecological research. Ecological concepts are exemplified by using aquatic and terrestrial systems; corresponding methodological approaches are demonstrated. In a more applied part of the lecture threats to biodiversity and the appropriate management are discussed.
ObjectiveThe objective of this lecture is to teach basic ecological concepts and the different levels of complexity in ecological research: the individual, the population, the community and the ecosystem level.
The students should learn ecological concepts at these different levels in the context of concrete examples from terrestrial and aquatic ecology. Corresponding methods for studying the systems will be presented.
A further aim of the lecture is that students achieve an understanding of biodiversity, why it is threatened and how it can be managed.
Content- Übersicht der aquatischen und terrestrischen Lebensräume mit ihren Bewohnern
- Einfluss von Umweltfaktoren (Temperatur, Strahlung, Wasser, Nährstoffe etc.) auf Organismen; Anpassung an bestimmte Umweltbedingungen
- Populationsdynamik: Ursachen, Beschreibung, Vorhersage und Regulation
- Interaktionen zwischen Arten (Konkurrenz, Koexistenz, Prädation, Parasitismus, Nahrungsnetze)
- Lebensgemeinschaften: Struktur, Stabilität, Sukzession
- Ökosysteme: Kompartimente, Stoff- und Energieflusse
- Biodiversität: Variation, Ursachen, Gefährdung und Erhaltung
- Aktuelle Naturschutzprobleme und -massnahmen
- Evolutionäre Ökologie: Methodik, Spezialisierung, Koevolution
Lecture notesUnterlagen, Vorlesungsfolien und relevante Literatur sind in der Lehrdokumentenablage abrufbar. Die Unterlagen für die nächste Vorlesung stehen jeweils spätestens am Freitagmorgen zur Verfügung.
LiteratureGenerelle Ökologie:
Townsend, Harper, Begon 2009. Ökologie. Springer, ca. Fr. 70.-

Aquatische Ökologie:
Lampert & Sommer 1999. Limnoökologie. Thieme, 2. Aufl., ca. Fr. 55.-;
Bohle 1995. Limnische Systeme. Springer, ca. Fr. 50.-

Baur B. et al. 2004. Biodiversität in der Schweiz. Haupt, Bern, 237 S.
Primack R.B. 2004. A primer of conservation biology. 3rd ed. Sinauer, Mass. USA, 320 pp.
Examination Block 2
752-4001-00LMicrobiologyO2 credits2VM. Ackermann, M. Schuppler, J. Vorholt-Zambelli
AbstractTeaching of basic knowledge in microbiology with main focus on Microbial Cell Structure and Function, Molecular Genetics, Microbial Growth, Metabolic Diversity, Phylogeny and Taxonomy, Prokaryotic Diversity, Human-Microbe Interactions, Biotechnology.
ObjectiveTeaching of basic knowledge in microbiology.
ContentDer Schwerpunkt liegt auf den Themen: Bakterielle Zellbiologie, Molekulare Genetik, Wachstumsphysiologie, Biochemische Diversität, Phylogenie und Taxonomie, Prokaryotische Vielfalt, Interaktion zwischen Menschen und Mikroorganismen sowie Biotechnologie.
Lecture notesWird von den jeweiligen Dozenten ausgegeben.
LiteratureDie Behandlung der Themen erfolgt auf der Basis des Lehrbuchs Brock, Biology of Microorganisms
752-0100-00LBiochemistryO2 credits2VC. Frei
AbstractBasic knowledge of enzymology, in particular the structure, kinetics and chemistry of enzyme-catalysed reaction in vitro and in vivo. Biochemistry of metabolism: Those completing the course are able to describe and understand fundamental cellular metabolic processes.
ObjectiveStudents are able to understand
- the structure and function of biological macromolecules
- the kinetic bases of enzyme reactions
- thermodynamic and mechanistic basics of relevant metabolic processes
Students are able to describe the relevant metabolic reactions in detail

Introduction, basics, composition of cells, biochemical units, repetition of relevant organic chemistry
Structure and function of proteins
Lipids an biological membranes
Enzymes and enzyme kinetics
Catalytic strategies
Metabolism: Basic concepts and design. Repetition of basic thermodynamics
Glycolysis, fermentation
The citric acid cycle
Oxidative phosphorylation
Fatty acid metabolism
Lecture notesHorton et al. (Pearson) serves as lecture notes.
Prerequisites / NoticeBasic knowledge in biology and chemistry is a prerequisite.
  •  Page  1  of  1