Search result: Catalogue data in Autumn Semester 2019
Atmospheric and Climate Science Master | ||||||
Modules | ||||||
Weather Systems and Atmospheric Dynamics | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|
701-1221-00L | Dynamics of Large-Scale Atmospheric Flow | W | 4 credits | 2V + 1U | H. Wernli, L. Papritz | |
Abstract | This lecture course is about the fundamental aspects of the dynamics of extratropical weather systems (quasi-geostropic dynamics, potential vorticity, Rossby waves, baroclinic instability). The fundamental concepts are formally introduced, quantitatively applied and illustrated with examples from the real atmosphere. Exercises (quantitative and qualitative) form an essential part of the course. | |||||
Learning objective | Understanding the dynamics of large-scale atmospheric flow | |||||
Content | Dynamical Meteorology is concerned with the dynamical processes of the earth's atmosphere. The fundamental equations of motion in the atmosphere will be discussed along with the dynamics and interactions of synoptic system - i.e. the low and high pressure systems that determine our weather. The motion of such systems can be understood in terms of quasi-geostrophic theory. The lecture course provides a derivation of the mathematical basis along with some interpretations and applications of the concept. | |||||
Lecture notes | Dynamics of large-scale atmospheric flow | |||||
Literature | - Holton J.R., An introduction to Dynamic Meteorogy. Academic Press, fourth edition 2004, - Pichler H., Dynamik der Atmosphäre, Bibliographisches Institut, 456 pp. 1997 | |||||
Prerequisites / Notice | Physics I, II, Environmental Fluid Dynamics | |||||
651-4053-05L | Boundary Layer Meteorology | W | 4 credits | 3G | M. Rotach, P. Calanca | |
Abstract | The Planetary Boundary Layer (PBL) constitutes the interface between the atmosphere and the Earth's surface. Theory on transport processes in the PBL and their dynamics is provided. This course treats theoretical background and idealized concepts. These are contrasted to real world applications and current research issues. | |||||
Learning objective | Overall goals of this course are given below. Focus is on the theoretical background and idealised concepts. Students have basic knowledge on atmospheric turbulence and theoretical as well as practical approaches to treat Planetary Boundary Layer flows. They are familiar with the relevant processes (turbulent transport, forcing) within, and typical states of the Planetary Boundary Layer. Idealized concepts are known as well as their adaptations under real surface conditions (as for example over complex topography). | |||||
Content | - Introduction - Turbulence - Statistical tratment of turbulence, turbulent transport - Conservation equations in a turbulent flow - Closure problem and closure assumptions - Scaling and similarity theory - Spectral characteristics - Concepts for non-ideal boundary layer conditions | |||||
Lecture notes | available (i.e. in English) | |||||
Literature | - Stull, R.B.: 1988, "An Introduction to Boundary Layer Meteorology", (Kluwer), 666 pp. - Panofsky, H. A. and Dutton, J.A.: 1984, "Atmospheric Turbulence, Models and Methods for Engineering Applications", (J. Wiley), 397 pp. - Kaimal JC and Finningan JJ: 1994, Atmospheric Boundary Layer Flows, Oxford University Press, 289 pp. - Wyngaard JC: 2010, Turbulence in the Atmosphere, Cambridge University Press, 393pp. | |||||
Prerequisites / Notice | Umwelt-Fluiddynamik (701-0479-00L) (environment fluid dynamics) or equivalent and basic knowledge in atmospheric science | |||||
Climate Processes and Feedbacks | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
701-1235-00L | Cloud Microphysics Number of participants limited to 16. Priority is given to PhD students majoring in Atmospheric and Climate Sciences, and remaining open spaces will be offered to the following groups: - PhD student Environmental sciences - MSc in Atmospheric and climate science - MSc in Environmental sciences All participants will be on the waiting list at first. Enrollment is possible until September 15th. The waiting list is active until September 27th. All students will be informed on September 16th, if they can participate in the lecture. The lecture takes place if a minimum of 5 students register for it. | W | 4 credits | 2V + 1U | Z. A. Kanji, U. Lohmann | |
Abstract | Clouds are a fascinating atmospheric phenomenon central to the hydrological cycle and the Earth`s climate. Interactions between cloud particles can result in precipitation, glaciation or evaporation of the cloud depending on its microstructure and microphysical processes. | |||||
Learning objective | The learning objective of this course is that students understand the formation of clouds and precipitation and can apply learned principles to interpret atmospheric observations of clouds and precipitation. | |||||
Content | see: http://www.iac.ethz.ch/edu/courses/master/modules/cloud-microphysics.html | |||||
Lecture notes | This course will be designed as a reading course in 1-2 small groups of 8 students maximum. It will be based on the textbook below. The students are expected to read chapters of this textbook prior to the class so that open issues, fascinating and/or difficult aspects can be discussed in depth. | |||||
Literature | Pao K. Wang: Physics and dynamics of clouds and precipitation, Cambridge University Press, 2012 | |||||
Prerequisites / Notice | Target group: Doctoral and Master students in Atmosphere and Climate | |||||
701-1251-00L | Land-Climate Dynamics Number of participants limited to 36. | W | 3 credits | 2G | S. I. Seneviratne, E. L. Davin | |
Abstract | The purpose of this course is to provide fundamental background on the role of land surface processes (vegetation, soil moisture dynamics, land energy and water balances) in the climate system. The course consists of 2 contact hours per week, including lectures, group projects and computer exercises. | |||||
Learning objective | The students can understand the role of land processes and associated feedbacks in the climate system. | |||||
Lecture notes | Powerpoint slides will be made available | |||||
Prerequisites / Notice | Prerequisites: Introductory lectures in atmospheric and climate science Atmospheric physics -> Link and/or Climate systems -> Link | |||||
Atmospheric Composition and Cycles | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
701-1239-00L | Aerosols I: Physical and Chemical Principles | W | 4 credits | 2V + 1U | M. Gysel Beer, U. Baltensperger, E. Weingartner | |
Abstract | Aerosols I deals with basic physical and chemical properties of aerosol particles. The importance of aerosols in the atmosphere and in other fields is discussed. | |||||
Learning objective | Knowledge of basic physical and chemical properties of aerosol particles and their importance in the atmosphere and in other fields | |||||
Content | physical and chemical properties of aerosols, aerosol dynamics (diffusion, coagulation...), optical properties (light scattering, -absorption, -extinction), aerosol production methods, experimental methods for physical and chemical characterization. | |||||
Lecture notes | materiel is distributed during the lecture | |||||
Literature | - Kulkarni, P., Baron, P. A., and Willeke, K.: Aerosol Measurement - Principles, Techniques, and Applications. Wiley, Hoboken, New Jersey, 2011. - Hinds, W. C.: Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. John Wiley & Sons, Inc., New York, 1999. - Colbeck I. (ed.) Physical and Chemical Properties of Aerosols, Blackie Academic & Professional, London, 1998. - Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Hoboken, John Wiley & Sons, Inc., 2006 | |||||
701-1233-00L | Stratospheric Chemistry | W | 4 credits | 2V + 1U | T. Peter, G. Chiodo, A. Stenke | |
Abstract | The lecture gives an overview on the manifold reactions which occur in the gas phase, in stratospheric aerosol droplets and in polar cloud particles. The focus is on the chemistry of stratospheric ozone and its influence through natural and anthropogenic effects, especially the ozone depletion caused by FCKW in mid-latitude and polar regions as well as the coupling with the greenhouse effect. | |||||
Learning objective | The students will understand the gas phase reactions in the stratosphere as well as reactions and processes in aerosol droplets and polar stratospheric clouds. The students will understand the most important aspects of stratospheric dynamics and the greenhouse gas effect in troposphere and stratosphere. The students will also aquire a good understanding of the coupling between stratospheric ozone and climate change. Furthermore, they will practise to explain fundamental concepts in stratospheric chemistry by means of scientific paper presentations. | |||||
Content | Short presentation of thermodynamical and kinetic basics of chemical reactions: bi- and termolecular reactions, photo-dissociation. Introduction to the chemical family concept: active species, their source gases and reservoir gases. Detailed treatment of the pure oxygen family (odd oxygen) according to the Chapman chemistry. Radical reactions of the oxygen species with nitric oxide, active halogens (chlorine and bromine) and odd hydrogen. Ozone depletion cycles. Methane depletion and ozone production in the lower stratosphere (photo-smog reactions). Heterogeneous chemistry on the background aerosol and its significance for heavy air traffic. Chemistry and dynamics of the ozone hole: Formation of polar stratospheric clouds and chloride activation. | |||||
Lecture notes | Documents are provided in the contact hours. | |||||
Literature | - Basseur, G. und S. Solomon, Aeronomy of the Middle Atmosphere, Kluwer Academic Publishers, 3rd Rev edition (December 30, 2005). - John H. Seinfeld and Spyros N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, New York, 1998. - WMO, Scientific Assessment of Ozone Depletion: 2014, Report No. 55, Geneva, 2015. | |||||
Prerequisites / Notice | Prerequisites: Basics in physical chemistry are required and an overview equivalent to the bachelor course in atmospheric chemistry (lecture 701-0471-01) is expected. 701-1233-00 V starts in the first week of the semester. The exercises 701-1233-00 U will start only in the 2nd week of the semester. | |||||
Climate History and Paleoclimatology | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
651-4057-00L | Climate History and Palaeoclimatology | W | 3 credits | 2G | H. Stoll, I. Hernández Almeida, L. M. Mejía Ramírez | |
Abstract | Climate history and paleoclimatology explores how the major features of the earth's climate system have varied in the past, and the driving forces and feedbacks for these changes. The major topics include the earth's CO2 concentration and mean temperature, the size and stability of ice sheets and sea level, the amount and distribution of precipitation, and the ocean heat transport. | |||||
Learning objective | The student will be able to describe the factors that regulate the earth's mean temperature and the distribution of different climates over the earth. Students will be able to use and understand the construction of simple quantitative models of the Earth's carbon cycle and temperature in Excel, to solve problems from the long term balancing of sinks and sources of carbon, to the Anthropogenic carbon cycle changes of the Anthropocene. Students will be able to interpret evidence of past climate changes from the main climate indicators or proxies recovered in geological records. Students will be able to use data from climate proxies to test if a given hypothesized mechanism for the climate change is supported or refuted. Students will be able to compare the magnitudes and rates of past changes in the carbon cycle, ice sheets, hydrological cycle, and ocean circulation, with predictions for climate changes over the next century to millennia. | |||||
Content | 1. Overview of elements of the climate system and earth energy balance 2. The Carbon cycle - long and short term regulation and feedbacks of atmospheric CO2. What regulates atmospheric CO2 over long tectonic timescales of millions to tens of millions of years? What are the drivers and feedbacks of transient perturbations like at the latest Palocene? What drives CO2 variations over glacial cycles and what drives it in the Anthropocene? 3. Ice sheets and sea level - What do expansionist glaciers want? What is the natural range of variation in the earth's ice sheets and the consequent effect on sea level? How do cyclic variations in the earth's orbit affect the size of ice sheets under modern climate and under past warmer climates? What conditions the mean size and stability or fragility of the large polar ice caps and is their evidence that they have dynamic behavior? What rates and magnitudes of sea level change have accompanied past ice sheet variations? When is the most recent time of sea level higher than modern, and by how much? What lessons do these have for the future? 4. Atmospheric circulation and variations in the earth's hydrological cycle - How variable are the earth's precipitation regimes? How large are the orbital scale variations in global monsoon systems? Will mean climate change El Nino frequency and intensity? What factors drive change in mid and high-latitude precipitation systems? Is there evidence that changes in water availability have played a role in the rise, demise, or dispersion of past civilizations? 5. The Ocean heat transport - How stable or fragile is the ocean heat conveyor, past and present? When did modern deepwater circulation develop? Will Greenland melting and shifts in precipitation bands, cause the North Atlantic Overturning Circulation to collapse? When and why has this happened before? | |||||
Hydrology and Water Cycle | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
701-1251-00L | Land-Climate Dynamics Number of participants limited to 36. | W | 3 credits | 2G | S. I. Seneviratne, E. L. Davin | |
Abstract | The purpose of this course is to provide fundamental background on the role of land surface processes (vegetation, soil moisture dynamics, land energy and water balances) in the climate system. The course consists of 2 contact hours per week, including lectures, group projects and computer exercises. | |||||
Learning objective | The students can understand the role of land processes and associated feedbacks in the climate system. | |||||
Lecture notes | Powerpoint slides will be made available | |||||
Prerequisites / Notice | Prerequisites: Introductory lectures in atmospheric and climate science Atmospheric physics -> Link and/or Climate systems -> Link | |||||
102-0237-00L | Hydrology II | W | 3 credits | 2G | P. Burlando, S. Fatichi | |
Abstract | The course presents advanced hydrological analyses of rainfall-runoff processes. The course is given in English. | |||||
Learning objective | Tools for hydrological modelling are discussed at the event and continuous scale. The focus is on the description of physical processes and their modelisation with practical examples. | |||||
Content | Monitoring of hydrological systems (point and space monitoring, remote sensing). The use of GIS in hydrology (practical applications). General concepts of watershed modelling. Infiltration. IUH models. Event based rainfall-runoff modelling. Continuous rainfall-runoff models (components and prrocesses). Example of modelling with the PRMS model. Calibration and validation of models. Flood routing (unsteady flow, hydrologic routing, examples). The course contains an extensive semester project. | |||||
Lecture notes | Parts of the script for "Hydrology I" are used. Also available are the overhead transparencies used in the lectures. The semester project consists of a two part instruction manual. | |||||
Literature | Additional literature is presented during the course. | |||||
701-1253-00L | Analysis of Climate and Weather Data | W | 3 credits | 2G | C. Frei | |
Abstract | An introduction into methods of statistical data analysis in meteorology and climatology. Applications of hypothesis testing, extreme value analysis, evaluation of deterministic and probabilistic predictions, principal component analysis. Participants understand the theoretical concepts and purpose of methods, can apply them independently and know how to interpret results professionally. | |||||
Learning objective | Students understand the theoretical foundations and probabilistic concepts of advanced analysis tools in meteorology and climatology. They can conduct such analyses independently, and they develop an attitude of scrutiny and an awareness of uncertainty when interpreting results. Participants improve skills in understanding technical literature that uses modern statistical data analyses. | |||||
Content | The course introduces several advanced methods of statistical data analysis frequently used in meteorology and climatology. It introduces the thoretical background of the methods, illustrates their application with example datasets, and discusses complications from assumptions and uncertainties. Generally, the course shall empower students to conduct data analysis thoughtfully and to interprete results critically. Topics covered: exploratory methods, hypothesis testing, analysis of climate trends, measuring the skill of deterministic and probabilistic predictions, analysis of extremes, principal component analysis and maximum covariance analysis. The course is divided into lectures and computer workshops. Hands-on experimentation with example data shall encourage students in the practical application of methods and train professional interpretation of results. R (a free software environment for statistical computing) will be used during the workshop. A short introduction into R will be provided during the course. | |||||
Lecture notes | Documentation and supporting material: - slides used during the lecture - excercise sets and solutions - R-packages with software and example datasets for workshop sessions All material is made available via the lecture web-page. | |||||
Literature | For complementary reading: - Wilks D.S., 2011: Statistical Methods in the Atmospheric Science. (3rd edition). Academic Press Inc., Elsevier LTD (Oxford) - Coles S., 2001: An introduction to statistical modeling of extreme values. Springer, London. 208 pp. | |||||
Prerequisites / Notice | Prerequisites: Basics in exploratory data analysis, probability calculus and statistics (incl linear regression) (e.g. Mathematik IV: Statistik (401-0624-00L) and Mathematik VI: Angewandte Statistik für Umweltnaturwissenschaften (701-0105-00L)). Some experience in programming (ideally in R). Some elementary background in atmospheric physics and climatology. | |||||
651-4053-05L | Boundary Layer Meteorology | W | 4 credits | 3G | M. Rotach, P. Calanca | |
Abstract | The Planetary Boundary Layer (PBL) constitutes the interface between the atmosphere and the Earth's surface. Theory on transport processes in the PBL and their dynamics is provided. This course treats theoretical background and idealized concepts. These are contrasted to real world applications and current research issues. | |||||
Learning objective | Overall goals of this course are given below. Focus is on the theoretical background and idealised concepts. Students have basic knowledge on atmospheric turbulence and theoretical as well as practical approaches to treat Planetary Boundary Layer flows. They are familiar with the relevant processes (turbulent transport, forcing) within, and typical states of the Planetary Boundary Layer. Idealized concepts are known as well as their adaptations under real surface conditions (as for example over complex topography). | |||||
Content | - Introduction - Turbulence - Statistical tratment of turbulence, turbulent transport - Conservation equations in a turbulent flow - Closure problem and closure assumptions - Scaling and similarity theory - Spectral characteristics - Concepts for non-ideal boundary layer conditions | |||||
Lecture notes | available (i.e. in English) | |||||
Literature | - Stull, R.B.: 1988, "An Introduction to Boundary Layer Meteorology", (Kluwer), 666 pp. - Panofsky, H. A. and Dutton, J.A.: 1984, "Atmospheric Turbulence, Models and Methods for Engineering Applications", (J. Wiley), 397 pp. - Kaimal JC and Finningan JJ: 1994, Atmospheric Boundary Layer Flows, Oxford University Press, 289 pp. - Wyngaard JC: 2010, Turbulence in the Atmosphere, Cambridge University Press, 393pp. | |||||
Prerequisites / Notice | Umwelt-Fluiddynamik (701-0479-00L) (environment fluid dynamics) or equivalent and basic knowledge in atmospheric science | |||||
Electives The students are free to choose individually from the entire course offer of ETH Zürich and the universities of Zürich and Bern. | ||||||
Weather Systems and Atmospheric Dynamics Courses are only offered in FS. | ||||||
Climate Processes and Feedbacks Two additional courses are offered in HS by University of Berne. | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
701-1221-00L | Dynamics of Large-Scale Atmospheric Flow | W | 4 credits | 2V + 1U | H. Wernli, L. Papritz | |
Abstract | This lecture course is about the fundamental aspects of the dynamics of extratropical weather systems (quasi-geostropic dynamics, potential vorticity, Rossby waves, baroclinic instability). The fundamental concepts are formally introduced, quantitatively applied and illustrated with examples from the real atmosphere. Exercises (quantitative and qualitative) form an essential part of the course. | |||||
Learning objective | Understanding the dynamics of large-scale atmospheric flow | |||||
Content | Dynamical Meteorology is concerned with the dynamical processes of the earth's atmosphere. The fundamental equations of motion in the atmosphere will be discussed along with the dynamics and interactions of synoptic system - i.e. the low and high pressure systems that determine our weather. The motion of such systems can be understood in terms of quasi-geostrophic theory. The lecture course provides a derivation of the mathematical basis along with some interpretations and applications of the concept. | |||||
Lecture notes | Dynamics of large-scale atmospheric flow | |||||
Literature | - Holton J.R., An introduction to Dynamic Meteorogy. Academic Press, fourth edition 2004, - Pichler H., Dynamik der Atmosphäre, Bibliographisches Institut, 456 pp. 1997 | |||||
Prerequisites / Notice | Physics I, II, Environmental Fluid Dynamics | |||||
651-4057-00L | Climate History and Palaeoclimatology | W | 3 credits | 2G | H. Stoll, I. Hernández Almeida, L. M. Mejía Ramírez | |
Abstract | Climate history and paleoclimatology explores how the major features of the earth's climate system have varied in the past, and the driving forces and feedbacks for these changes. The major topics include the earth's CO2 concentration and mean temperature, the size and stability of ice sheets and sea level, the amount and distribution of precipitation, and the ocean heat transport. | |||||
Learning objective | The student will be able to describe the factors that regulate the earth's mean temperature and the distribution of different climates over the earth. Students will be able to use and understand the construction of simple quantitative models of the Earth's carbon cycle and temperature in Excel, to solve problems from the long term balancing of sinks and sources of carbon, to the Anthropogenic carbon cycle changes of the Anthropocene. Students will be able to interpret evidence of past climate changes from the main climate indicators or proxies recovered in geological records. Students will be able to use data from climate proxies to test if a given hypothesized mechanism for the climate change is supported or refuted. Students will be able to compare the magnitudes and rates of past changes in the carbon cycle, ice sheets, hydrological cycle, and ocean circulation, with predictions for climate changes over the next century to millennia. | |||||
Content | 1. Overview of elements of the climate system and earth energy balance 2. The Carbon cycle - long and short term regulation and feedbacks of atmospheric CO2. What regulates atmospheric CO2 over long tectonic timescales of millions to tens of millions of years? What are the drivers and feedbacks of transient perturbations like at the latest Palocene? What drives CO2 variations over glacial cycles and what drives it in the Anthropocene? 3. Ice sheets and sea level - What do expansionist glaciers want? What is the natural range of variation in the earth's ice sheets and the consequent effect on sea level? How do cyclic variations in the earth's orbit affect the size of ice sheets under modern climate and under past warmer climates? What conditions the mean size and stability or fragility of the large polar ice caps and is their evidence that they have dynamic behavior? What rates and magnitudes of sea level change have accompanied past ice sheet variations? When is the most recent time of sea level higher than modern, and by how much? What lessons do these have for the future? 4. Atmospheric circulation and variations in the earth's hydrological cycle - How variable are the earth's precipitation regimes? How large are the orbital scale variations in global monsoon systems? Will mean climate change El Nino frequency and intensity? What factors drive change in mid and high-latitude precipitation systems? Is there evidence that changes in water availability have played a role in the rise, demise, or dispersion of past civilizations? 5. The Ocean heat transport - How stable or fragile is the ocean heat conveyor, past and present? When did modern deepwater circulation develop? Will Greenland melting and shifts in precipitation bands, cause the North Atlantic Overturning Circulation to collapse? When and why has this happened before? | |||||
701-1257-00L | European Climate Change | W | 3 credits | 2G | C. Schär, J. Rajczak, S. C. Scherrer | |
Abstract | The lecture provides an overview of climate change in Europe, from a physical and atmospheric science perspective. It covers the following topics: • observational datasets, observation and detection of climate change; • underlying physical processes and feedbacks; • numerical and statistical approaches; • currently available projections. | |||||
Learning objective | At the end of this course, participants should: • understand the key physical processes shaping climate change in Europe; • know about the methodologies used in climate change studies, encompassing observational, numerical, as well as statistical approaches; • be familiar with relevant observational and modeling data sets; • be able to tackle simple climate change questions using available data sets. | |||||
Content | Contents: • global context • observational data sets, analysis of climate trends and climate variability in Europe • global and regional climate modeling • statistical downscaling • key aspects of European climate change: intensification of the water cycle, Polar and Mediterranean amplification, changes in extreme events, changes in hydrology and snow cover, topographic effects • projections of European and Alpine climate change | |||||
Lecture notes | Slides and lecture notes will be made available at http://www.iac.ethz.ch/edu/courses/master/electives/european-climate-change.html | |||||
Prerequisites / Notice | Participants should have a background in natural sciences, and have attended introductory lectures in atmospheric sciences or meteorology. | |||||
Atmospheric Composition and Cycles | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
102-0635-01L | Air Pollution Control | W | 6 credits | 4G | J. Wang, B. Buchmann | |
Abstract | The lecture provides in the first part an introduction to the formation of air pollutants by technical processes, the emission of these chemicals into the atmosphere and their impact on air quality. The second part covers different strategies and techniques for emission reduction. The basic knowledge is deepened by the discussion of specific air pollution problems of today's society. | |||||
Learning objective | The students gain general knowledge of the technical processes resulting in air pollution and study the methods used for air pollution control. The students can identify major air pollution sources and understand the methods for measuring pollutants, collecting and analyzing data. The students can suggest and evaluate possible control methods and equipment, design control systems and estimate their efficiency and efforts. The students know the different strategies of air pollution control and are familiar with their scientific fundamentals. They are able to incorporate goals concerning air quality into their engineering work. | |||||
Content | Part 1 Emission, Immission, Transmission Fluxes of pollutants and their environmental impact: - physical and chemical processes leading to emission of pollutants - mass and energy of processes - Emission measurement techniques and concepts - quantification of emissions from individual and aggregated sources - extent and development of the emissions (Switzerland and global) - propagation and transport of pollutants (transmission) - meteorological parameters influencing air pollution dispersion - deterministic and stochastic models, describing air pollution dispersion - dispersion models (Gaussian model, box model, receptor model) - measurement concepts for ambient air (immission level) - extent and development of ambient air mixing ratios - goal and instrument of air pollution control Part 2 Air Pollution Control Technologies The reduction of the formation of pollutants is done by modifying the processes (pro-cessintegrated measures) and by different engineering operations for the cleaning of waste gas (downstream pollution control). It will be demonstrated, that the variety of these procedures can be traced back to the application of a few basic physical and chemical principles. Procedures for the removal of particles (inertial separator, filtration, electrostatic precipitators, scrubbers) with their different mechanisms (field forces, impaction and diffusion processes) and the modelling of these mechanisms. Procedures for the removal of gaseous pollutants and the description of the driving forces involved, as well as the equilibrium and the kinetics of the relevant processes (absorption, adsorption as well as thermal, catalytic and biological conversions). Discussion of the technical possibilities to solve the actual air pollution problems. | |||||
Lecture notes | Brigitte Buchmann, Air pollution control, Part I Jing Wang, Air pollution control, Part II Lecture slides and exercises | |||||
Literature | List of literature included in script | |||||
Prerequisites / Notice | College lectures on basic physics, chemistry and mathematics. Language of instruction: In German or in English. | |||||
701-1235-00L | Cloud Microphysics Number of participants limited to 16. Priority is given to PhD students majoring in Atmospheric and Climate Sciences, and remaining open spaces will be offered to the following groups: - PhD student Environmental sciences - MSc in Atmospheric and climate science - MSc in Environmental sciences All participants will be on the waiting list at first. Enrollment is possible until September 15th. The waiting list is active until September 27th. All students will be informed on September 16th, if they can participate in the lecture. The lecture takes place if a minimum of 5 students register for it. | W | 4 credits | 2V + 1U | Z. A. Kanji, U. Lohmann | |
Abstract | Clouds are a fascinating atmospheric phenomenon central to the hydrological cycle and the Earth`s climate. Interactions between cloud particles can result in precipitation, glaciation or evaporation of the cloud depending on its microstructure and microphysical processes. | |||||
Learning objective | The learning objective of this course is that students understand the formation of clouds and precipitation and can apply learned principles to interpret atmospheric observations of clouds and precipitation. | |||||
Content | see: http://www.iac.ethz.ch/edu/courses/master/modules/cloud-microphysics.html | |||||
Lecture notes | This course will be designed as a reading course in 1-2 small groups of 8 students maximum. It will be based on the textbook below. The students are expected to read chapters of this textbook prior to the class so that open issues, fascinating and/or difficult aspects can be discussed in depth. | |||||
Literature | Pao K. Wang: Physics and dynamics of clouds and precipitation, Cambridge University Press, 2012 | |||||
Prerequisites / Notice | Target group: Doctoral and Master students in Atmosphere and Climate | |||||
651-4053-05L | Boundary Layer Meteorology | W | 4 credits | 3G | M. Rotach, P. Calanca | |
Abstract | The Planetary Boundary Layer (PBL) constitutes the interface between the atmosphere and the Earth's surface. Theory on transport processes in the PBL and their dynamics is provided. This course treats theoretical background and idealized concepts. These are contrasted to real world applications and current research issues. | |||||
Learning objective | Overall goals of this course are given below. Focus is on the theoretical background and idealised concepts. Students have basic knowledge on atmospheric turbulence and theoretical as well as practical approaches to treat Planetary Boundary Layer flows. They are familiar with the relevant processes (turbulent transport, forcing) within, and typical states of the Planetary Boundary Layer. Idealized concepts are known as well as their adaptations under real surface conditions (as for example over complex topography). | |||||
Content | - Introduction - Turbulence - Statistical tratment of turbulence, turbulent transport - Conservation equations in a turbulent flow - Closure problem and closure assumptions - Scaling and similarity theory - Spectral characteristics - Concepts for non-ideal boundary layer conditions | |||||
Lecture notes | available (i.e. in English) | |||||
Literature | - Stull, R.B.: 1988, "An Introduction to Boundary Layer Meteorology", (Kluwer), 666 pp. - Panofsky, H. A. and Dutton, J.A.: 1984, "Atmospheric Turbulence, Models and Methods for Engineering Applications", (J. Wiley), 397 pp. - Kaimal JC and Finningan JJ: 1994, Atmospheric Boundary Layer Flows, Oxford University Press, 289 pp. - Wyngaard JC: 2010, Turbulence in the Atmosphere, Cambridge University Press, 393pp. | |||||
Prerequisites / Notice | Umwelt-Fluiddynamik (701-0479-00L) (environment fluid dynamics) or equivalent and basic knowledge in atmospheric science | |||||
Climate History and Paleoclimatology Two courses are offered in autumn semester at University of Berne. ETH courses are only offered in FS. | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
651-4041-00L | Sedimentology I: Physical Processes and Sedimentary Systems | W | 3 credits | 2G | V. Picotti | |
Abstract | Sediments preserved a record of past landscapes. This courses focuses on understanding the processes that modify sedimentary landscapes with time and how we can read this changes in the sedimentary record. | |||||
Learning objective | The students learn basic concepts of modern sedimentology and stratigraphy in the context of sequence stratigraphy and sea level change. They discuss the advantages and pitfalls of the method and look beyond. In particular we pay attention to introducing the importance of considering entire sediment routing systems and understanding their functionning. | |||||
Content | Details on the program will be handed out during the first lecture. We will attribute the papers for presentation on the 26th, so please be here on that day! | |||||
Literature | The sedimentary record of sea-level change Angela Coe, the Open University. Cambridge University Press | |||||
Prerequisites / Notice | The grading of students is based on in-class exercises and end-semester examination. | |||||
651-4043-00L | Sedimentology II: Biological and Chemical Processes in Lacustrine and Marine Systems Prerequisite: Successful completion of the MSc-course "Sedimentology I" (651-4041-00L). | W | 3 credits | 2G | V. Picotti, A. Gilli, I. Hernández Almeida, H. Stoll | |
Abstract | The course will focus on biological amd chemical aspects of sedimentation in marine environments. Marine sedimentation will be traced from coast to deep-sea. The use of stable isotopes palaeoceanography will be discussed. Neritic, hemipelagic and pelagic sediments will be used as proxies for environmental change during times of major perturbations of climate and oceanography. | |||||
Learning objective | -You will understand chemistry and biology of the marine carbonate system -You will be able to relate carbonate mineralogy with facies and environmental conditions -You will be familiar with cool-water and warm-water carbonates -You will see carbonate and organic-carbon rich sediments as part of the global carbon cycle -You will be able to recognize links between climate and marine carbonate systems (e.g. acidification of oceans and reef growth) -You will be able to use geological archives as source of information on global change -You will have an overview of marine sedimentation through time | |||||
Content | -carbonates,: chemistry, mineralogy, biology -carbonate sedimentation from the shelf to the deep sea -carbonate facies -cool-water and warm-water carbonates -organic-carbon and black shales -C-cycle, carbonates, Corg : CO2 sources and sink -Carbonates: their geochemical proxies for environmental change: stable isotopes, Mg/Ca, Sr -marine sediments thorugh geological time -carbonates and evaporites -lacustrine carbonates -economic aspects of limestone | |||||
Lecture notes | no script. scientific articles will be distributed during the course | |||||
Literature | We will read and critically discuss scientific articles relevant for "biological and chemical processes in marine and lacustrine systems" | |||||
Prerequisites / Notice | The grading of students is based on in-class exercises and end-semester examination. | |||||
651-4901-00L | Quaternary Dating Methods | W | 3 credits | 2G | I. Hajdas, M. Christl, S. Ivy Ochs | |
Abstract | Reconstruction of time scales is critical for all Quaternary studies in both Geology and Archeology. Various methods are applied depending on the time range of interest and the archive studied. In this lecture, we focus on the last 50 ka and the methods that are most frequently used for dating Quaternary sediments and landforms in this time range. | |||||
Learning objective | Students will be made familiar with the details of the six dating methods through lectures on basic principles, analysis of case studies, solving of problem sets for age calculation and visits to dating laboratories. At the end of the course students will: 1. understand the fundamental principles of the most frequently used dating methods for Quaternary studies. 2. be able to calculate an age based on data of the six methods studied. 3. choose which dating method (or combination of methods) is suitable for a certain field problem. 4. critically read and evaluate the application of dating methods in scientific publications. | |||||
Content | 1. Introduction: Time scales for the Quaternary, Isotopes and decay 2. Radiocarbon dating: principles and applications 3. Cosmogenic nuclides: 3He,10Be, 14C, 21Ne, 26Cl, 36Cl 4. U-series disequilibrium dating 5. Luminescence dating 6. Introduction to incremental: varve counting, dendrochronology and ice cores chronologies 7. Cs-137 and Pb-210 (soil, sediments, ice core) 8. Summary and comparison of results from several dating methods at specific sites | |||||
Prerequisites / Notice | Visit to radiocarbon lab, cosmogenic nuclide lab, accelerator (AMS) facility. Visit to Limno Lab and sampling a sediment core Optional (individual): 1-5 days hands-on radiocarbon dating at the C14 lab at ETH Hoenggerebrg Required: attending the lecture, visiting laboratories, handing back solutions for problem sets (Exercises) |
- Page 1 of 3 All