Suchergebnis: Katalogdaten im Herbstsemester 2019
Atmospheric and Climate Science Master ![]() | ||||||
![]() | ||||||
![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
701-1221-00L | Dynamics of Large-Scale Atmospheric Flow ![]() | W | 4 KP | 2V + 1U | H. Wernli, L. Papritz | |
Kurzbeschreibung | Die Vorlesung vermittelt die Grundlagen der Dynamik von aussertropischen Wettersystemen (quasi-geostrophische Dynamik, potentielle Vorticity, Rossby-Wellen, barokline Instabilität). Grundlegende Konzepte werden formal eingeführt, quantitativ angewendet und mit realen Beispielen illustriert und vertieft. Übungen (quantitativ und qualitativ) sind ein wesentlicher Bestandteil des Kurses. | |||||
Lernziel | Verständnis für dynamische Prozesse in der Atmosphäre sowie deren mathematisch-physikalische Formulierung. | |||||
Inhalt | Die Atmosphärenphysik II behandelt vor allem die dynamischen Prozesse in der Erdatmosphäre. Diskutiert werden die Bewegungsgesetze der Atmosphäre und die Dynamik und Wechselwirkungen von synoptischen Systemen - also den wetterbestimmenden Hoch- und Tiefdruckgebieten. Mathematische Grundlage hierfuer ist insbesondere die Theorie der quasi-geostrophischen Bewegung, die im Rahmen der Vorlesung hergeleitet und interpretiert wird. | |||||
Skript | Dynamics of large-scale atmospheric flow | |||||
Literatur | - Holton J.R., An introduction to Dynamic Meteorogy. Academic Press, fourth edition 2004, - Pichler H., Dynamik der Atmosphäre, Bibliographisches Institut, 456 pp. 1997 | |||||
Voraussetzungen / Besonderes | Voraussetzungen: Physik I, II, Umwelt Fluiddynamik | |||||
651-4053-05L | Boundary Layer Meteorology | W | 4 KP | 3G | M. Rotach, P. Calanca | |
Kurzbeschreibung | The Planetary Boundary Layer (PBL) constitutes the interface between the atmosphere and the Earth's surface. Theory on transport processes in the PBL and their dynamics is provided. This course treats theoretical background and idealized concepts. These are contrasted to real world applications and current research issues. | |||||
Lernziel | Overall goals of this course are given below. Focus is on the theoretical background and idealised concepts. Students have basic knowledge on atmospheric turbulence and theoretical as well as practical approaches to treat Planetary Boundary Layer flows. They are familiar with the relevant processes (turbulent transport, forcing) within, and typical states of the Planetary Boundary Layer. Idealized concepts are known as well as their adaptations under real surface conditions (as for example over complex topography). | |||||
Inhalt | - Introduction - Turbulence - Statistical tratment of turbulence, turbulent transport - Conservation equations in a turbulent flow - Closure problem and closure assumptions - Scaling and similarity theory - Spectral characteristics - Concepts for non-ideal boundary layer conditions | |||||
Skript | available (i.e. in English) | |||||
Literatur | - Stull, R.B.: 1988, "An Introduction to Boundary Layer Meteorology", (Kluwer), 666 pp. - Panofsky, H. A. and Dutton, J.A.: 1984, "Atmospheric Turbulence, Models and Methods for Engineering Applications", (J. Wiley), 397 pp. - Kaimal JC and Finningan JJ: 1994, Atmospheric Boundary Layer Flows, Oxford University Press, 289 pp. - Wyngaard JC: 2010, Turbulence in the Atmosphere, Cambridge University Press, 393pp. | |||||
Voraussetzungen / Besonderes | Umwelt-Fluiddynamik (701-0479-00L) (environment fluid dynamics) or equivalent and basic knowledge in atmospheric science | |||||
![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
701-1235-00L | Cloud Microphysics ![]() Number of participants limited to 16. Priority is given to PhD students majoring in Atmospheric and Climate Sciences, and remaining open spaces will be offered to the following groups: - PhD student Environmental sciences - MSc in Atmospheric and climate science - MSc in Environmental sciences All participants will be on the waiting list at first. Enrollment is possible until September 15th. The waiting list is active until September 27th. All students will be informed on September 16th, if they can participate in the lecture. The lecture takes place if a minimum of 5 students register for it. | W | 4 KP | 2V + 1U | Z. A. Kanji, U. Lohmann | |
Kurzbeschreibung | Clouds are a fascinating atmospheric phenomenon central to the hydrological cycle and the Earth`s climate. Interactions between cloud particles can result in precipitation, glaciation or evaporation of the cloud depending on its microstructure and microphysical processes. | |||||
Lernziel | The learning objective of this course is that students understand the formation of clouds and precipitation and can apply learned principles to interpret atmospheric observations of clouds and precipitation. | |||||
Inhalt | see: http://www.iac.ethz.ch/edu/courses/master/modules/cloud-microphysics.html | |||||
Skript | This course will be designed as a reading course in 1-2 small groups of 8 students maximum. It will be based on the textbook below. The students are expected to read chapters of this textbook prior to the class so that open issues, fascinating and/or difficult aspects can be discussed in depth. | |||||
Literatur | Pao K. Wang: Physics and dynamics of clouds and precipitation, Cambridge University Press, 2012 | |||||
Voraussetzungen / Besonderes | Target group: Doctoral and Master students in Atmosphere and Climate | |||||
701-1251-00L | Land-Climate Dynamics ![]() ![]() Number of participants limited to 36. | W | 3 KP | 2G | S. I. Seneviratne, E. L. Davin | |
Kurzbeschreibung | The purpose of this course is to provide fundamental background on the role of land surface processes (vegetation, soil moisture dynamics, land energy and water balances) in the climate system. The course consists of 2 contact hours per week, including lectures, group projects and computer exercises. | |||||
Lernziel | The students can understand the role of land processes and associated feedbacks in the climate system. | |||||
Skript | Powerpoint slides will be made available | |||||
Voraussetzungen / Besonderes | Prerequisites: Introductory lectures in atmospheric and climate science Atmospheric physics -> Link and/or Climate systems -> Link | |||||
![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
701-1239-00L | Aerosols I: Physical and Chemical Principles | W | 4 KP | 2V + 1U | M. Gysel Beer, U. Baltensperger, E. Weingartner | |
Kurzbeschreibung | Im Kurs Aerosole I werden Grundlagen der Aerosolphysik- und Chemie vermittelt. Spezifische Eigenschaften kleiner Teilchen, Bedeutung von Aerosolen in der Atmosphäre und in anderen Bereichen werden behandelt. | |||||
Lernziel | Vermittlung von Grundlagen der Aerosolphysik und -chemie und spezifischer Eigenschaften kleiner Teilchen, Bedeutung von Aerosolen in der Atmosphäre und in anderen Bereichen. | |||||
Inhalt | Physikalische und chemische Eigenschaften von Aerosolen, Aerosoldynamik (Diffusion, Koagulation), optische Eigenschaften (Lichtstreuung, -absorption, -extinktion), Verfahren zur Erzeugung von Aerosolen, Messmethoden zur physikalischen und chemischen Charakterisierung. | |||||
Skript | Es werden Beilagen abgegeben | |||||
Literatur | - Kulkarni, P., Baron, P. A., and Willeke, K.: Aerosol Measurement - Principles, Techniques, and Applications. Wiley, Hoboken, New Jersey, 2011. - Hinds, W. C.: Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. John Wiley & Sons, Inc., New York, 1999. - Colbeck I. (ed.) Physical and Chemical Properties of Aerosols, Blackie Academic & Professional, London, 1998. - Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Hoboken, John Wiley & Sons, Inc., 2006 | |||||
701-1233-00L | Stratospheric Chemistry ![]() | W | 4 KP | 2V + 1U | T. Peter, G. Chiodo, A. Stenke | |
Kurzbeschreibung | Die Vorlesung vermittelt einen Überblick über die vielfältigen Reaktionen, die in der Gasphase, in stratosphärischen Aerosoltröpfchen und polaren Wolken ablaufen. Dabei steht das stratosphärische Ozon und dessen Beeinflussung durch natürliche und anthropogene Effekte im Mittelpunkt, besonders die durch FCKW verursachte Ozonzerstörung in polaren Breiten sowie Kopplungen mit dem Treibhauseffekt. | |||||
Lernziel | Die Studierenden erarbeiten sich ein Grundverständnis der stratosphärischen Reaktionen in der Gasphase sowie von Reaktionen und Prozessen in stratosphärischen Aerosoltröpfchen und polaren Wolken. Die Studierenden kennen die wichtigsten Aspekte der stratosphärischen Zirkulation sowie des Teibhauseffekts in der Tropos- und Stratosphäre. Sie kennen und verstehen Kopplungsmechnismen zwischen stratosphärischer Ozonchemie und Klimawandel. Desweiteren vertiefen die Studierenden fundamentale Konzepte der Stratosphärenchemie anhand von kurzen Präsentationen. | |||||
Inhalt | Kurze Darstellung der thermodynamischen und kinetischen Grundlagen chemischer Reaktionen: bi- und termolekulare Reaktionen, Photodissoziation. Vorstellung des chemischen Familienkonzepts: aktive Spezies, deren Quellgase und Revervoirgase. Detaillierte Betrachtung der reinen Sauerstofffamilie (ungerader Sauerstoff) gemäss der Chapman-Chemie. Radikalreaktionen der Sauerstoffspezies mit Stickoxiden, aktiven Halogenen (Chlor und Brom) und ungeradem Wasserstoff. Ozonabbauzyklen. Methanabbau und Ozonproduktion in der unteren Stratosphäre (Photosmog-Reaktionen). Heterogene Chemie auf dem Hintergrundaerosol und deren Bedeutung für hohen Flugverkehr. Chemie und Dynamik des Ozonlochs: Bildung polarer stratosphärischer Wolken und Chloraktivierung. | |||||
Skript | Unterlagen werden in den Vorlesungsstunden ausgeteilt. | |||||
Literatur | - Basseur, G. und S. Solomon, Aeronomy of the Middle Atmosphere, Kluwer Academic Publishers, 3rd Rev edition (December 30, 2005). - John H. Seinfeld and Spyros N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, New York, 1998. - WMO, Scientific Assessment of Ozone Depletion: 2014, Report No. 55, Geneva, 2015. | |||||
Voraussetzungen / Besonderes | Voraussetzungen: Grundlagen in physikalischer Chemie sind notwendig, und ein Überblick äquivalent zu der Bachelor-Vorlesung "Atmosphärenchemie" (LV 701-0471-01) werden erwartet. Die Vorlesung 701-1233-00 V beginnt in der ersten Semesterwoche. Die Uebungen 701-1233-00 U erst in der zweiten Semesterwoche. | |||||
![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
651-4057-00L | Climate History and Palaeoclimatology | W | 3 KP | 2G | H. Stoll, I. Hernández Almeida, L. M. Mejía Ramírez | |
Kurzbeschreibung | Climate history and paleoclimatology explores how the major features of the earth's climate system have varied in the past, and the driving forces and feedbacks for these changes. The major topics include the earth's CO2 concentration and mean temperature, the size and stability of ice sheets and sea level, the amount and distribution of precipitation, and the ocean heat transport. | |||||
Lernziel | The student will be able to describe the factors that regulate the earth's mean temperature and the distribution of different climates over the earth. Students will be able to use and understand the construction of simple quantitative models of the Earth's carbon cycle and temperature in Excel, to solve problems from the long term balancing of sinks and sources of carbon, to the Anthropogenic carbon cycle changes of the Anthropocene. Students will be able to interpret evidence of past climate changes from the main climate indicators or proxies recovered in geological records. Students will be able to use data from climate proxies to test if a given hypothesized mechanism for the climate change is supported or refuted. Students will be able to compare the magnitudes and rates of past changes in the carbon cycle, ice sheets, hydrological cycle, and ocean circulation, with predictions for climate changes over the next century to millennia. | |||||
Inhalt | 1. Overview of elements of the climate system and earth energy balance 2. The Carbon cycle - long and short term regulation and feedbacks of atmospheric CO2. What regulates atmospheric CO2 over long tectonic timescales of millions to tens of millions of years? What are the drivers and feedbacks of transient perturbations like at the latest Palocene? What drives CO2 variations over glacial cycles and what drives it in the Anthropocene? 3. Ice sheets and sea level - What do expansionist glaciers want? What is the natural range of variation in the earth's ice sheets and the consequent effect on sea level? How do cyclic variations in the earth's orbit affect the size of ice sheets under modern climate and under past warmer climates? What conditions the mean size and stability or fragility of the large polar ice caps and is their evidence that they have dynamic behavior? What rates and magnitudes of sea level change have accompanied past ice sheet variations? When is the most recent time of sea level higher than modern, and by how much? What lessons do these have for the future? 4. Atmospheric circulation and variations in the earth's hydrological cycle - How variable are the earth's precipitation regimes? How large are the orbital scale variations in global monsoon systems? Will mean climate change El Nino frequency and intensity? What factors drive change in mid and high-latitude precipitation systems? Is there evidence that changes in water availability have played a role in the rise, demise, or dispersion of past civilizations? 5. The Ocean heat transport - How stable or fragile is the ocean heat conveyor, past and present? When did modern deepwater circulation develop? Will Greenland melting and shifts in precipitation bands, cause the North Atlantic Overturning Circulation to collapse? When and why has this happened before? | |||||
![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
701-1251-00L | Land-Climate Dynamics ![]() ![]() Number of participants limited to 36. | W | 3 KP | 2G | S. I. Seneviratne, E. L. Davin | |
Kurzbeschreibung | The purpose of this course is to provide fundamental background on the role of land surface processes (vegetation, soil moisture dynamics, land energy and water balances) in the climate system. The course consists of 2 contact hours per week, including lectures, group projects and computer exercises. | |||||
Lernziel | The students can understand the role of land processes and associated feedbacks in the climate system. | |||||
Skript | Powerpoint slides will be made available | |||||
Voraussetzungen / Besonderes | Prerequisites: Introductory lectures in atmospheric and climate science Atmospheric physics -> Link and/or Climate systems -> Link | |||||
102-0237-00L | Hydrology II ![]() | W | 3 KP | 2G | P. Burlando, S. Fatichi | |
Kurzbeschreibung | The course presents advanced hydrological analyses of rainfall-runoff processes. The course is given in English. | |||||
Lernziel | Tools for hydrological modelling are discussed at the event and continuous scale. The focus is on the description of physical processes and their modelisation with practical examples. | |||||
Inhalt | Monitoring of hydrological systems (point and space monitoring, remote sensing). The use of GIS in hydrology (practical applications). General concepts of watershed modelling. Infiltration. IUH models. Event based rainfall-runoff modelling. Continuous rainfall-runoff models (components and prrocesses). Example of modelling with the PRMS model. Calibration and validation of models. Flood routing (unsteady flow, hydrologic routing, examples). The course contains an extensive semester project. | |||||
Skript | Parts of the script for "Hydrology I" are used. Also available are the overhead transparencies used in the lectures. The semester project consists of a two part instruction manual. | |||||
Literatur | Additional literature is presented during the course. | |||||
701-1253-00L | Analysis of Climate and Weather Data ![]() | W | 3 KP | 2G | C. Frei | |
Kurzbeschreibung | An introduction into methods of statistical data analysis in meteorology and climatology. Applications of hypothesis testing, extreme value analysis, evaluation of deterministic and probabilistic predictions, principal component analysis. Participants understand the theoretical concepts and purpose of methods, can apply them independently and know how to interpret results professionally. | |||||
Lernziel | Students understand the theoretical foundations and probabilistic concepts of advanced analysis tools in meteorology and climatology. They can conduct such analyses independently, and they develop an attitude of scrutiny and an awareness of uncertainty when interpreting results. Participants improve skills in understanding technical literature that uses modern statistical data analyses. | |||||
Inhalt | The course introduces several advanced methods of statistical data analysis frequently used in meteorology and climatology. It introduces the thoretical background of the methods, illustrates their application with example datasets, and discusses complications from assumptions and uncertainties. Generally, the course shall empower students to conduct data analysis thoughtfully and to interprete results critically. Topics covered: exploratory methods, hypothesis testing, analysis of climate trends, measuring the skill of deterministic and probabilistic predictions, analysis of extremes, principal component analysis and maximum covariance analysis. The course is divided into lectures and computer workshops. Hands-on experimentation with example data shall encourage students in the practical application of methods and train professional interpretation of results. R (a free software environment for statistical computing) will be used during the workshop. A short introduction into R will be provided during the course. | |||||
Skript | Documentation and supporting material: - slides used during the lecture - excercise sets and solutions - R-packages with software and example datasets for workshop sessions All material is made available via the lecture web-page. | |||||
Literatur | For complementary reading: - Wilks D.S., 2011: Statistical Methods in the Atmospheric Science. (3rd edition). Academic Press Inc., Elsevier LTD (Oxford) - Coles S., 2001: An introduction to statistical modeling of extreme values. Springer, London. 208 pp. | |||||
Voraussetzungen / Besonderes | Prerequisites: Basics in exploratory data analysis, probability calculus and statistics (incl linear regression) (e.g. Mathematik IV: Statistik (401-0624-00L) and Mathematik VI: Angewandte Statistik für Umweltnaturwissenschaften (701-0105-00L)). Some experience in programming (ideally in R). Some elementary background in atmospheric physics and climatology. | |||||
651-4053-05L | Boundary Layer Meteorology | W | 4 KP | 3G | M. Rotach, P. Calanca | |
Kurzbeschreibung | The Planetary Boundary Layer (PBL) constitutes the interface between the atmosphere and the Earth's surface. Theory on transport processes in the PBL and their dynamics is provided. This course treats theoretical background and idealized concepts. These are contrasted to real world applications and current research issues. | |||||
Lernziel | Overall goals of this course are given below. Focus is on the theoretical background and idealised concepts. Students have basic knowledge on atmospheric turbulence and theoretical as well as practical approaches to treat Planetary Boundary Layer flows. They are familiar with the relevant processes (turbulent transport, forcing) within, and typical states of the Planetary Boundary Layer. Idealized concepts are known as well as their adaptations under real surface conditions (as for example over complex topography). | |||||
Inhalt | - Introduction - Turbulence - Statistical tratment of turbulence, turbulent transport - Conservation equations in a turbulent flow - Closure problem and closure assumptions - Scaling and similarity theory - Spectral characteristics - Concepts for non-ideal boundary layer conditions | |||||
Skript | available (i.e. in English) | |||||
Literatur | - Stull, R.B.: 1988, "An Introduction to Boundary Layer Meteorology", (Kluwer), 666 pp. - Panofsky, H. A. and Dutton, J.A.: 1984, "Atmospheric Turbulence, Models and Methods for Engineering Applications", (J. Wiley), 397 pp. - Kaimal JC and Finningan JJ: 1994, Atmospheric Boundary Layer Flows, Oxford University Press, 289 pp. - Wyngaard JC: 2010, Turbulence in the Atmosphere, Cambridge University Press, 393pp. | |||||
Voraussetzungen / Besonderes | Umwelt-Fluiddynamik (701-0479-00L) (environment fluid dynamics) or equivalent and basic knowledge in atmospheric science | |||||
![]() Den Studierenden steht das gesamte Lehrangebot der ETHZ und der Universitäten Zürich und Bern zur individuellen Auswahl offen. | ||||||
![]() ![]() Kurse werden im FS angeboten. | ||||||
![]() ![]() Zwei Kurse werden im HS an der Universität Bern angeboten. | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
701-1221-00L | Dynamics of Large-Scale Atmospheric Flow ![]() | W | 4 KP | 2V + 1U | H. Wernli, L. Papritz | |
Kurzbeschreibung | Die Vorlesung vermittelt die Grundlagen der Dynamik von aussertropischen Wettersystemen (quasi-geostrophische Dynamik, potentielle Vorticity, Rossby-Wellen, barokline Instabilität). Grundlegende Konzepte werden formal eingeführt, quantitativ angewendet und mit realen Beispielen illustriert und vertieft. Übungen (quantitativ und qualitativ) sind ein wesentlicher Bestandteil des Kurses. | |||||
Lernziel | Verständnis für dynamische Prozesse in der Atmosphäre sowie deren mathematisch-physikalische Formulierung. | |||||
Inhalt | Die Atmosphärenphysik II behandelt vor allem die dynamischen Prozesse in der Erdatmosphäre. Diskutiert werden die Bewegungsgesetze der Atmosphäre und die Dynamik und Wechselwirkungen von synoptischen Systemen - also den wetterbestimmenden Hoch- und Tiefdruckgebieten. Mathematische Grundlage hierfuer ist insbesondere die Theorie der quasi-geostrophischen Bewegung, die im Rahmen der Vorlesung hergeleitet und interpretiert wird. | |||||
Skript | Dynamics of large-scale atmospheric flow | |||||
Literatur | - Holton J.R., An introduction to Dynamic Meteorogy. Academic Press, fourth edition 2004, - Pichler H., Dynamik der Atmosphäre, Bibliographisches Institut, 456 pp. 1997 | |||||
Voraussetzungen / Besonderes | Voraussetzungen: Physik I, II, Umwelt Fluiddynamik | |||||
651-4057-00L | Climate History and Palaeoclimatology | W | 3 KP | 2G | H. Stoll, I. Hernández Almeida, L. M. Mejía Ramírez | |
Kurzbeschreibung | Climate history and paleoclimatology explores how the major features of the earth's climate system have varied in the past, and the driving forces and feedbacks for these changes. The major topics include the earth's CO2 concentration and mean temperature, the size and stability of ice sheets and sea level, the amount and distribution of precipitation, and the ocean heat transport. | |||||
Lernziel | The student will be able to describe the factors that regulate the earth's mean temperature and the distribution of different climates over the earth. Students will be able to use and understand the construction of simple quantitative models of the Earth's carbon cycle and temperature in Excel, to solve problems from the long term balancing of sinks and sources of carbon, to the Anthropogenic carbon cycle changes of the Anthropocene. Students will be able to interpret evidence of past climate changes from the main climate indicators or proxies recovered in geological records. Students will be able to use data from climate proxies to test if a given hypothesized mechanism for the climate change is supported or refuted. Students will be able to compare the magnitudes and rates of past changes in the carbon cycle, ice sheets, hydrological cycle, and ocean circulation, with predictions for climate changes over the next century to millennia. | |||||
Inhalt | 1. Overview of elements of the climate system and earth energy balance 2. The Carbon cycle - long and short term regulation and feedbacks of atmospheric CO2. What regulates atmospheric CO2 over long tectonic timescales of millions to tens of millions of years? What are the drivers and feedbacks of transient perturbations like at the latest Palocene? What drives CO2 variations over glacial cycles and what drives it in the Anthropocene? 3. Ice sheets and sea level - What do expansionist glaciers want? What is the natural range of variation in the earth's ice sheets and the consequent effect on sea level? How do cyclic variations in the earth's orbit affect the size of ice sheets under modern climate and under past warmer climates? What conditions the mean size and stability or fragility of the large polar ice caps and is their evidence that they have dynamic behavior? What rates and magnitudes of sea level change have accompanied past ice sheet variations? When is the most recent time of sea level higher than modern, and by how much? What lessons do these have for the future? 4. Atmospheric circulation and variations in the earth's hydrological cycle - How variable are the earth's precipitation regimes? How large are the orbital scale variations in global monsoon systems? Will mean climate change El Nino frequency and intensity? What factors drive change in mid and high-latitude precipitation systems? Is there evidence that changes in water availability have played a role in the rise, demise, or dispersion of past civilizations? 5. The Ocean heat transport - How stable or fragile is the ocean heat conveyor, past and present? When did modern deepwater circulation develop? Will Greenland melting and shifts in precipitation bands, cause the North Atlantic Overturning Circulation to collapse? When and why has this happened before? | |||||
701-1257-00L | European Climate Change | W | 3 KP | 2G | C. Schär, J. Rajczak, S. C. Scherrer | |
Kurzbeschreibung | The lecture provides an overview of climate change in Europe, from a physical and atmospheric science perspective. It covers the following topics: • observational datasets, observation and detection of climate change; • underlying physical processes and feedbacks; • numerical and statistical approaches; • currently available projections. | |||||
Lernziel | At the end of this course, participants should: • understand the key physical processes shaping climate change in Europe; • know about the methodologies used in climate change studies, encompassing observational, numerical, as well as statistical approaches; • be familiar with relevant observational and modeling data sets; • be able to tackle simple climate change questions using available data sets. | |||||
Inhalt | Contents: • global context • observational data sets, analysis of climate trends and climate variability in Europe • global and regional climate modeling • statistical downscaling • key aspects of European climate change: intensification of the water cycle, Polar and Mediterranean amplification, changes in extreme events, changes in hydrology and snow cover, topographic effects • projections of European and Alpine climate change | |||||
Skript | Slides and lecture notes will be made available at http://www.iac.ethz.ch/edu/courses/master/electives/european-climate-change.html | |||||
Voraussetzungen / Besonderes | Participants should have a background in natural sciences, and have attended introductory lectures in atmospheric sciences or meteorology. | |||||
![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
102-0635-01L | Luftreinhaltung ![]() | W | 6 KP | 4G | J. Wang, B. Buchmann | |
Kurzbeschreibung | Einführung in die Grundlagen der Luftreinhaltung. Zuerst werden Entstehung von Luftfremdstoffen, verursacht durch technische Prozesse, Emission dieser Stoffe in die Atmosphäre sowie die daraus resultierende Aussenluftbelastung diskutiert. Im zweiten Teil werden verschiedene Strategien und Techniken der Emissionsminderung sowie deren Anwendung auf aktuelle Problemfelder der Gesellschaft behandelt. | |||||
Lernziel | Die Studierenden verstehen die Mechanismen der Schadstoffbildung bei technischen Prozessen und kennen die Methoden, die in der Lufteinhaltung eingesetzt werden. Die wichtigsten Emissionsquellen sind den Studierenden bekannt und sie verstehen Messmethoden, Datenerhebung und -analyse. Die Studierenden können Methoden und Massnahmen zur Luftreinhaltung beurteilen, Mess- und Kontrollsysteme vorschlagen sowie Effizienz und Aufwand abschätzen. Die Studierenden kennen die verschiedenen Strategien und Verfahren der Luftreinhaltetechnik und deren physikalisch-chemischen Wirkmechanismen. Sie können lufthygienische Vorgaben zur Emissionsminderung in ihre planerische Tätigkeit einbeziehen. | |||||
Inhalt | Teil 1 Luftreinhaltung: Emissionen, Immissionen, Transmission Schadstoffflüsse und daraus resultierende Umweltbelastung: - Schadstoffbildung durch physikalische und chemische Prozesse - Stoff- und Energiebilanz von Prozessen - Emissionsmesstechnik & -messkonzepte - Quantifizierung der Emissionen von Einzelquellen sowie Regionen - Ausmass und die zeitliche Entwicklung der Emissionen, CH & Welt - Ausbreitung und Verfrachtung von Luftfremdstoffe (Transmission) - meteorologischen Einflussgrössen der Ausbreitung - deterministische und stochastische Beschreibung der Ausbreitung - Ausbreitungsmodelle (Gauss-, Box-, Rezeptor-modell) - Ausmass und die zeitliche Entwicklung der Immissionen - Immissionsmesskonzepte - Ziele und Instrumente Schweizer Luftreinhaltepolitik Teil 2 Luftreinhaltetechnik Die Emissionsminderung erfolgt durch Reduktion der Schadstoffbildung durch Änderung der ablaufenden Prozesse (produktionsintegrierte Massnahmen) sowie durch verschiedene Abgasreinigungstechniken (additive Massnahmen). Dabei wird gezeigt, dass die Vielfalt der technischen Verfahren auf die Anwendung von einigen wenigen physikalischen und chemischen Prinzipien zurückgeführt werden kann. Verfahren zur Feststoffabscheidung (Massenkraftabscheider, mechanische und elektrische Filtration, Wäscher) mit ihren unterschiedlichen Wirkmechanismen (Feldkräfte, Impaktion und Diffusionsprozesse) und deren Modellierung. Verfahren zur Abscheidung gasförmiger Schadstoffe und deren Beschreibung durch die treibenden Kräfte sowie durch Gleichgewicht und Geschwindigkeit der ablaufenden Prozesse (Absorption und Adsorption sowie thermische, katalytische und biologische Umwandlungen). Die Anwendung dieser Strategien und Techniken auf aktuelle Problemfelder. | |||||
Skript | Brigitte Buchmann, Luftreinhaltung, Part I Jing Wang, Luftreinhaltung, Part II Vorlesungsfolien und Übungen | |||||
Literatur | Literaturliste im Skript | |||||
Voraussetzungen / Besonderes | Hochschule Vorlesungen über grundlegende Physik, Chemie und Mathematik. Unterrichtssprache: In Deutsch oder in Englisch. | |||||
701-1235-00L | Cloud Microphysics ![]() Number of participants limited to 16. Priority is given to PhD students majoring in Atmospheric and Climate Sciences, and remaining open spaces will be offered to the following groups: - PhD student Environmental sciences - MSc in Atmospheric and climate science - MSc in Environmental sciences All participants will be on the waiting list at first. Enrollment is possible until September 15th. The waiting list is active until September 27th. All students will be informed on September 16th, if they can participate in the lecture. The lecture takes place if a minimum of 5 students register for it. | W | 4 KP | 2V + 1U | Z. A. Kanji, U. Lohmann | |
Kurzbeschreibung | Clouds are a fascinating atmospheric phenomenon central to the hydrological cycle and the Earth`s climate. Interactions between cloud particles can result in precipitation, glaciation or evaporation of the cloud depending on its microstructure and microphysical processes. | |||||
Lernziel | The learning objective of this course is that students understand the formation of clouds and precipitation and can apply learned principles to interpret atmospheric observations of clouds and precipitation. | |||||
Inhalt | see: http://www.iac.ethz.ch/edu/courses/master/modules/cloud-microphysics.html | |||||
Skript | This course will be designed as a reading course in 1-2 small groups of 8 students maximum. It will be based on the textbook below. The students are expected to read chapters of this textbook prior to the class so that open issues, fascinating and/or difficult aspects can be discussed in depth. | |||||
Literatur | Pao K. Wang: Physics and dynamics of clouds and precipitation, Cambridge University Press, 2012 | |||||
Voraussetzungen / Besonderes | Target group: Doctoral and Master students in Atmosphere and Climate | |||||
651-4053-05L | Boundary Layer Meteorology | W | 4 KP | 3G | M. Rotach, P. Calanca | |
Kurzbeschreibung | The Planetary Boundary Layer (PBL) constitutes the interface between the atmosphere and the Earth's surface. Theory on transport processes in the PBL and their dynamics is provided. This course treats theoretical background and idealized concepts. These are contrasted to real world applications and current research issues. | |||||
Lernziel | Overall goals of this course are given below. Focus is on the theoretical background and idealised concepts. Students have basic knowledge on atmospheric turbulence and theoretical as well as practical approaches to treat Planetary Boundary Layer flows. They are familiar with the relevant processes (turbulent transport, forcing) within, and typical states of the Planetary Boundary Layer. Idealized concepts are known as well as their adaptations under real surface conditions (as for example over complex topography). | |||||
Inhalt | - Introduction - Turbulence - Statistical tratment of turbulence, turbulent transport - Conservation equations in a turbulent flow - Closure problem and closure assumptions - Scaling and similarity theory - Spectral characteristics - Concepts for non-ideal boundary layer conditions | |||||
Skript | available (i.e. in English) | |||||
Literatur | - Stull, R.B.: 1988, "An Introduction to Boundary Layer Meteorology", (Kluwer), 666 pp. - Panofsky, H. A. and Dutton, J.A.: 1984, "Atmospheric Turbulence, Models and Methods for Engineering Applications", (J. Wiley), 397 pp. - Kaimal JC and Finningan JJ: 1994, Atmospheric Boundary Layer Flows, Oxford University Press, 289 pp. - Wyngaard JC: 2010, Turbulence in the Atmosphere, Cambridge University Press, 393pp. | |||||
Voraussetzungen / Besonderes | Umwelt-Fluiddynamik (701-0479-00L) (environment fluid dynamics) or equivalent and basic knowledge in atmospheric science | |||||
![]() ![]() Zwei Kurse werden im HS an der Universität Bern angeboten. Die ETH Kurse werden im FS angeboten. | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
651-4041-00L | Sedimentology I: Physical Processes and Sedimentary Systems | W | 3 KP | 2G | V. Picotti | |
Kurzbeschreibung | Sediments preserved a record of past landscapes. This courses focuses on understanding the processes that modify sedimentary landscapes with time and how we can read this changes in the sedimentary record. | |||||
Lernziel | The students learn basic concepts of modern sedimentology and stratigraphy in the context of sequence stratigraphy and sea level change. They discuss the advantages and pitfalls of the method and look beyond. In particular we pay attention to introducing the importance of considering entire sediment routing systems and understanding their functionning. | |||||
Inhalt | Details on the program will be handed out during the first lecture. We will attribute the papers for presentation on the 26th, so please be here on that day! | |||||
Literatur | The sedimentary record of sea-level change Angela Coe, the Open University. Cambridge University Press | |||||
Voraussetzungen / Besonderes | The grading of students is based on in-class exercises and end-semester examination. | |||||
651-4043-00L | Sedimentology II: Biological and Chemical Processes in Lacustrine and Marine Systems Prerequisite: Successful completion of the MSc-course "Sedimentology I" (651-4041-00L). | W | 3 KP | 2G | V. Picotti, A. Gilli, I. Hernández Almeida, H. Stoll | |
Kurzbeschreibung | The course will focus on biological amd chemical aspects of sedimentation in marine environments. Marine sedimentation will be traced from coast to deep-sea. The use of stable isotopes palaeoceanography will be discussed. Neritic, hemipelagic and pelagic sediments will be used as proxies for environmental change during times of major perturbations of climate and oceanography. | |||||
Lernziel | -You will understand chemistry and biology of the marine carbonate system -You will be able to relate carbonate mineralogy with facies and environmental conditions -You will be familiar with cool-water and warm-water carbonates -You will see carbonate and organic-carbon rich sediments as part of the global carbon cycle -You will be able to recognize links between climate and marine carbonate systems (e.g. acidification of oceans and reef growth) -You will be able to use geological archives as source of information on global change -You will have an overview of marine sedimentation through time | |||||
Inhalt | -carbonates,: chemistry, mineralogy, biology -carbonate sedimentation from the shelf to the deep sea -carbonate facies -cool-water and warm-water carbonates -organic-carbon and black shales -C-cycle, carbonates, Corg : CO2 sources and sink -Carbonates: their geochemical proxies for environmental change: stable isotopes, Mg/Ca, Sr -marine sediments thorugh geological time -carbonates and evaporites -lacustrine carbonates -economic aspects of limestone | |||||
Skript | no script. scientific articles will be distributed during the course | |||||
Literatur | We will read and critically discuss scientific articles relevant for "biological and chemical processes in marine and lacustrine systems" | |||||
Voraussetzungen / Besonderes | The grading of students is based on in-class exercises and end-semester examination. | |||||
651-4901-00L | Quaternary Dating Methods ![]() | W | 3 KP | 2G | I. Hajdas, M. Christl, S. Ivy Ochs | |
Kurzbeschreibung | Reconstruction of time scales is critical for all Quaternary studies in both Geology and Archeology. Various methods are applied depending on the time range of interest and the archive studied. In this lecture, we focus on the last 50 ka and the methods that are most frequently used for dating Quaternary sediments and landforms in this time range. | |||||
Lernziel | Students will be made familiar with the details of the six dating methods through lectures on basic principles, analysis of case studies, solving of problem sets for age calculation and visits to dating laboratories. At the end of the course students will: 1. understand the fundamental principles of the most frequently used dating methods for Quaternary studies. 2. be able to calculate an age based on data of the six methods studied. 3. choose which dating method (or combination of methods) is suitable for a certain field problem. 4. critically read and evaluate the application of dating methods in scientific publications. | |||||
Inhalt | 1. Introduction: Time scales for the Quaternary, Isotopes and decay 2. Radiocarbon dating: principles and applications 3. Cosmogenic nuclides: 3He,10Be, 14C, 21Ne, 26Cl, 36Cl 4. U-series disequilibrium dating 5. Luminescence dating 6. Introduction to incremental: varve counting, dendrochronology and ice cores chronologies 7. Cs-137 and Pb-210 (soil, sediments, ice core) 8. Summary and comparison of results from several dating methods at specific sites | |||||
Voraussetzungen / Besonderes | Visit to radiocarbon lab, cosmogenic nuclide lab, accelerator (AMS) facility. Visit to Limno Lab and sampling a sediment core Optional (individual): 1-5 days hands-on radiocarbon dating at the C14 lab at ETH Hoenggerebrg Required: attending the lecture, visiting laboratories, handing back solutions for problem sets (Exercises) |
Seite 1 von 3
Alle