Search result: Catalogue data in Autumn Semester 2019

Environmental Sciences Master Information
Major in Atmosphere and Climate
Prerequisites
NumberTitleTypeECTSHoursLecturers
701-0471-01LAtmospheric Chemistry Information W3 credits2GM. Ammann, T. Peter
AbstractThe lecture provides an introduction to atmospheric chemistry at bachelor level. It introduces the kinetics of gas phase reactions, the concept of solubility and reactions in aerosols and in clouds and explains the chemical and physical mechanisms responsible for global (e.g. stratospheric ozone depletion) as well as regional (e.g. urban air pollution) environmental problems.
ObjectiveThe students will understand the basics of gas phase reactions and of reactions and processes in aerosols and clouds. The students will understand the most important chemical processes in the troposphere and the stratosphere.
The students will also acquire a good understanding of atmospheric environmental problems including air pollution, stratospheric ozone destruction and changes in the oxidative capacity of the global atmosphere.
Content- Origin and properties of the atmosphere: composition (gases and aerosols), structure, large scale dynamics, UV radiation
- Thermodynamics and kinetics of gas phase reactions: enthalpy and free energy of reactions, rate laws, mechanisms of bimolecular and termolecular reactions.
- Tropospheric photochemistry: Photolysis reactions, photochemical O3 formation, role and budget of HOx, dry and wet deposition
- Aerosols and clouds: chemical properties, primary and secondary aerosol sources, solubility of gases, hygroscopicity, kinetics of gas to particle transfer, N2O5 chemistry, SO2 oxidation, secondary organic aerosols
- Air quality: role of planetary boundary layer, summer- versus winter-smog, environmental problems, legislation, long-term trends
- Stratospheric chemistry: Chapman cycle, Brewer-Dobson circulation, catalytic ozone destruction cycles, polar ozone hole, Montreal protocol
- Global aspects: global budgets of ozone, methane, CO and NOx, air quality - climate interactions
Lecture notesVorlesungsunterlagen (Folien) werden laufend während des Semesters jeweils mind. 2 Tage vor der Vorlesung zur Verfügung gestellt.
Prerequisites / NoticeAttendance of the lecture "Atmosphäre" LV 701-0023-00L or equivalent is a pre-requisite, and basic courses in physics and chemistry are expected.

On Mondays (or upon agreement) a tutorial is offered. This allows the students to discuss unresolved issues from the lecture or to discuss the problems of the exercise series.
701-0473-00LWeather Systems Information W3 credits2GM. A. Sprenger, F. S. Scholder-Aemisegger
AbstractSatellite observations; analysis of vertical soundings; geostrophic and thermal wind; cyclones at mid-latitude; global circulation; north-atlantic oscillation; atmospheric blocking situtations; Eulerian and Lagrangian perspective; potential vorticity; Alpine dynamics (storms, orographic wind); planetary boundary layer
ObjectiveThe students are able to
- explain up-to-date meteorological observation techniques and the basic methods of theoretical atmospheric dynamics
- to discuss the mathematical basis of atmospheric dynamics, based on selected atmospheric flow phenomena
- to explain the basic dynamics of the global circulation and of synoptic- and meso-scale flow features
- to explain how mountains influence the atmospheric flow on different scales
ContentSatellite observations; analysis of vertical soundings; geostrophic and thermal wind; cyclones at mid-latitude; global circulation; north-atlantic oscillation; atmospheric blocking situtations; Eulerian and Lagrangian perspective; potential vorticity; Alpine dynamics (storms, orographic wind); planetary boundary layer
Lecture notesLecture notes and slides
LiteratureAtmospheric Science, An Introductory Survey
John M. Wallace and Peter V. Hobbs, Academic Press
701-0475-00LAtmospheric PhysicsW3 credits2GU. Lohmann, A. Beck
AbstractThis course covers the basics of atmospheric physics, which consist of: cloud and precipitation formation especially prediction of thunderstorm development, aerosol physics as well as artificial weather modification.
ObjectiveStudents are able
- to explain the mechanisms of thunderstorm formation using knowledge of thermodynamics and cloud microphysics.
- to evaluate the significance of clouds and aerosol particles for artificial weather modification.
ContentMoist processes/thermodynamics; aerosol physics; cloud formation; precipitation processes, thunderstorms; importance of aerosols and clouds for weather modification
Lecture notesPowerpoint slides and chapters from the textbook will be made available
LiteratureLohmann, U., Lüönd, F. and Mahrt, F., An Introduction to Clouds:
From the Microscale to Climate, Cambridge Univ. Press, 391 pp., 2016.
Prerequisites / Notice50% of the time we use the concept of "flipped classroom" (en.wikipedia.org/wiki/Flipped_classroom), which we introduce at the beginning.

We offer a lab tour, in which we demonstrate how some of the processes discussed in the lectures are measured with instruments.

There is a additional tutorial right after each lecture to give you the chance to ask further questions and discuss the exercises. The participation is recommended but voluntary.
701-0461-00LNumerical Methods in Environmental Sciences Information W3 credits2GC. Schär
AbstractThis lecture imparts the mathematical basis necessary for the development and application of
numerical models in the field of Environmental Science. The lecture material includes an introduction into numerical techniques for solving ordinary and partial differential equations, as well as exercises aimed at the realization of simple models.
ObjectiveThis lecture imparts the mathematical basis necessary for the development and application of
numerical models in the field of Environmental Science. The lecture material includes an introduction into numerical techniques for solving ordinary and partial differential equations, as well as exercises aimed at the realization of simple models.
ContentClassification of numerical problems, introduction to finite-difference methods, time integration schemes, non-linearity, conservative numerical techniques, an overview of spectral and finite-element methods. Examples and exercises from a diverse cross-section of Environmental Science.

Three obligatory exercises, each two hours in length, are integrated into the lecture. The implementation language is Python (previous experience not necessary: a Phython introduction is given). Example programs and graphics tools are supplied.
Lecture notesPer Web auf Link
LiteratureList of literature is provided.
Mandatory Courses
Introduction Course
NumberTitleTypeECTSHoursLecturers
701-1213-00LIntroduction Course to Master Studies Atmosphere and Climate Information O2 credits2GH. Joos, T. Peter
AbstractNew master students are introduced to the atmospheric and climate research field through keynotes given by the programme's professors. In several self-assessment and networking workshops they get to know each other and find their position in the science.
ObjectiveThe aims of this course are i) to welcome all students to the master program and to ETH, ii) to acquaint students with the faculty teaching in the field of atmospheric and climate science at ETH and at the University of Bern, iii) that the students get to know each other and iv) to assess needs and discuss options for training and eduction of soft-skills during the Master program and to give an overview of the study options in general
Colloquia
NumberTitleTypeECTSHoursLecturers
651-4095-01LColloquium Atmosphere and Climate 1 Restricted registration - show details O1 credit1KH. Joos, C. Schär, D. N. Bresch, D. Domeisen, E. Fischer, N. Gruber, R. Knutti, U. Lohmann, T. Peter, S. I. Seneviratne, H. Wernli, M. Wild
AbstractThe colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions.
ObjectiveThe students are exposed to different atmospheric science topics and learn how to take part in scientific discussions.
651-4095-02LColloquium Atmosphere and Climate 2 Restricted registration - show details O1 credit1KH. Joos, C. Schär, D. N. Bresch, D. Domeisen, E. Fischer, N. Gruber, R. Knutti, U. Lohmann, T. Peter, S. I. Seneviratne, H. Wernli, M. Wild
AbstractThe colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions.
ObjectiveThe students are exposed to different atmospheric science topics and learn how to take part in scientific discussions.
651-4095-03LColloquium Atmosphere and Climate 3 Restricted registration - show details O1 credit1KH. Joos, C. Schär, D. N. Bresch, D. Domeisen, E. Fischer, N. Gruber, R. Knutti, U. Lohmann, T. Peter, S. I. Seneviratne, H. Wernli, M. Wild
AbstractThe colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions.
ObjectiveThe students are exposed to different atmospheric science topics and learn how to take part in scientific discussions.
Seminars
NumberTitleTypeECTSHoursLecturers
701-1211-01LMaster's Seminar: Atmosphere and Climate 1 Restricted registration - show details O3 credits2SH. Joos, I. Medhaug, O. Stebler, M. A. Wüest
AbstractIn this seminar, the process of writing a scientific proposal will be
introduced. The essential elements of a proposal, including the peer
review process, will be outlined and class exercises will train
scientific writing skills. Knowledge exchange between class
participants is promoted through the preparation of a master thesis
proposal and evaluation of each other's work.
ObjectiveTraining scientific writing skills.
ContentIn this seminar, the process of writing a scientific proposal will be
introduced. The essential elements of a proposal, including the peer
review process, will be outlined and class exercises will train
scientific writing skills. Knowledge exchange between class
participants is promoted through the preparation of a master thesis
proposal and evaluation of each other's work.
Prerequisites / NoticeAttendance is mandatory.
701-1211-02LMaster's Seminar: Atmosphere and Climate 2 Restricted registration - show details O3 credits2SH. Joos, I. Medhaug, O. Stebler, M. A. Wüest
AbstractIn this seminar scientific project management is introduced and applied to your master project. The course concludes with a presentation of your project including an overview of the science and a discussion of project management techniques applied to your thesis project.
ObjectiveApply scientific project management techniques to your master project.
ContentIn this seminar scientific project management is introduced and applied to your master project. The course concludes with a presentation of your project including an overview of the science and a discussion of project management techniques applied to your thesis project.
Prerequisites / NoticeAttendance is mandatory.
Weather Systems and Atmospheric Dynamics
NumberTitleTypeECTSHoursLecturers
701-1221-00LDynamics of Large-Scale Atmospheric Flow Information W4 credits2V + 1UH. Wernli, L. Papritz
AbstractThis lecture course is about the fundamental aspects of the dynamics of extratropical weather systems (quasi-geostropic dynamics, potential vorticity, Rossby waves, baroclinic instability). The fundamental concepts are formally introduced, quantitatively applied and illustrated with examples from the real atmosphere. Exercises (quantitative and qualitative) form an essential part of the course.
ObjectiveUnderstanding the dynamics of large-scale atmospheric flow
ContentDynamical Meteorology is concerned with the dynamical processes of the
earth's atmosphere. The fundamental equations of motion in the atmosphere will be discussed along with the dynamics and interactions of synoptic system - i.e. the low and high pressure systems that determine our weather. The motion of such systems can be understood in terms of quasi-geostrophic theory. The lecture course provides a derivation of the mathematical basis along with some interpretations and applications of the concept.
Lecture notesDynamics of large-scale atmospheric flow
Literature- Holton J.R., An introduction to Dynamic Meteorogy. Academic Press, fourth edition 2004,
- Pichler H., Dynamik der Atmosphäre, Bibliographisches Institut, 456 pp. 1997
Prerequisites / NoticePhysics I, II, Environmental Fluid Dynamics
651-4053-05LBoundary Layer MeteorologyW4 credits3GM. Rotach, P. Calanca
AbstractThe Planetary Boundary Layer (PBL) constitutes the interface between the atmosphere and the Earth's surface. Theory on transport processes in the PBL and their dynamics is provided. This course treats theoretical background and idealized concepts. These are contrasted to real world applications and current research issues.
ObjectiveOverall goals of this course are given below. Focus is on the theoretical background and idealised concepts.
Students have basic knowledge on atmospheric turbulence and theoretical as well as practical approaches to treat Planetary Boundary Layer flows. They are familiar with the relevant processes (turbulent transport, forcing) within, and typical states of the Planetary Boundary Layer. Idealized concepts are known as well as their adaptations under real surface conditions (as for example over complex topography).
Content- Introduction
- Turbulence
- Statistical tratment of turbulence, turbulent transport
- Conservation equations in a turbulent flow
- Closure problem and closure assumptions
- Scaling and similarity theory
- Spectral characteristics
- Concepts for non-ideal boundary layer conditions
Lecture notesavailable (i.e. in English)
Literature- Stull, R.B.: 1988, "An Introduction to Boundary Layer Meteorology", (Kluwer), 666 pp.
- Panofsky, H. A. and Dutton, J.A.: 1984, "Atmospheric Turbulence, Models and Methods for Engineering Applications", (J. Wiley), 397 pp.
- Kaimal JC and Finningan JJ: 1994, Atmospheric Boundary Layer Flows, Oxford University Press, 289 pp.
- Wyngaard JC: 2010, Turbulence in the Atmosphere, Cambridge University Press, 393pp.
Prerequisites / NoticeUmwelt-Fluiddynamik (701-0479-00L) (environment fluid dynamics) or equivalent and basic knowledge in atmospheric science
Climate Processes and Feedbacks
NumberTitleTypeECTSHoursLecturers
701-1235-00LCloud Microphysics Restricted registration - show details
Number of participants limited to 16.

Priority is given to PhD students majoring in Atmospheric and Climate Sciences, and remaining open spaces will be offered to the following groups:
- PhD student Environmental sciences
- MSc in Atmospheric and climate science
- MSc in Environmental sciences

All participants will be on the waiting list at first. Enrollment is possible until September 15th. The waiting list is active until September 27th. All students will be informed on September 16th, if they can participate in the lecture.
The lecture takes place if a minimum of 5 students register for it.
W4 credits2V + 1UZ. A. Kanji, U. Lohmann
AbstractClouds are a fascinating atmospheric phenomenon central to the hydrological cycle and the Earth`s climate. Interactions between cloud particles can result in precipitation, glaciation or evaporation of the cloud depending on its microstructure and microphysical processes.
ObjectiveThe learning objective of this course is that students understand the formation of clouds and precipitation and can apply learned principles to interpret atmospheric observations of clouds and precipitation.
Contentsee: Link
Lecture notesThis course will be designed as a reading course in 1-2 small groups of 8 students maximum. It will be based on the textbook below. The students are expected to read chapters of this textbook prior to the class so that open issues, fascinating and/or difficult aspects can be discussed in depth.
LiteraturePao K. Wang: Physics and dynamics of clouds and precipitation, Cambridge University Press, 2012
Prerequisites / NoticeTarget group: Doctoral and Master students in Atmosphere and Climate
701-1251-00LLand-Climate Dynamics Information Restricted registration - show details
Number of participants limited to 36.
W3 credits2GS. I. Seneviratne, E. L. Davin
AbstractThe purpose of this course is to provide fundamental background on the role of land surface processes (vegetation, soil moisture dynamics, land energy and water balances) in the climate system. The course consists of 2 contact hours per week, including lectures, group projects and computer exercises.
ObjectiveThe students can understand the role of land processes and associated feedbacks in the climate system.
Lecture notesPowerpoint slides will be made available
Prerequisites / NoticePrerequisites: Introductory lectures in atmospheric and climate science
Atmospheric physics -> Link
and/or
Climate systems -> Link
Atmospheric Composition and Cycles
NumberTitleTypeECTSHoursLecturers
701-1233-00LStratospheric Chemistry Information W4 credits2V + 1UT. Peter, G. Chiodo, A. Stenke
AbstractThe lecture gives an overview on the manifold reactions which occur in the gas phase, in stratospheric aerosol droplets and in polar cloud particles. The focus is on the chemistry of stratospheric ozone and its influence through natural and anthropogenic effects, especially the ozone depletion caused by FCKW in mid-latitude and polar regions as well as the coupling with the greenhouse effect.
ObjectiveThe students will understand the gas phase reactions in the stratosphere as well as reactions and processes in aerosol droplets and polar stratospheric clouds.
The students will understand the most important aspects of stratospheric dynamics and the greenhouse gas effect in troposphere and stratosphere.
The students will also aquire a good understanding of the coupling between stratospheric ozone and climate change.
Furthermore, they will practise to explain fundamental concepts in stratospheric chemistry by means of scientific paper presentations.
ContentShort presentation of thermodynamical and kinetic basics of chemical reactions: bi- and termolecular reactions, photo-dissociation. Introduction to the chemical family concept: active species, their source gases and reservoir gases. Detailed treatment of the pure oxygen family (odd oxygen) according to the Chapman chemistry. Radical reactions of the oxygen species with nitric oxide, active halogens (chlorine and bromine) and odd hydrogen. Ozone depletion cycles. Methane depletion and ozone production in the lower stratosphere (photo-smog reactions). Heterogeneous chemistry on the background aerosol and its significance for heavy air traffic. Chemistry and dynamics of the ozone hole: Formation of polar stratospheric clouds and chloride activation.
Lecture notesDocuments are provided in the contact hours.
Literature- Basseur, G. und S. Solomon, Aeronomy of the Middle Atmosphere, Kluwer Academic Publishers, 3rd Rev edition (December 30, 2005).
- John H. Seinfeld and Spyros N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, New York, 1998.
- WMO, Scientific Assessment of Ozone Depletion: 2014, Report No. 55, Geneva, 2015.
Prerequisites / NoticePrerequisites: Basics in physical chemistry are required and an overview equivalent to the bachelor course in atmospheric chemistry (lecture 701-0471-01) is expected.

701-1233-00 V starts in the first week of the semester. The exercises 701-1233-00 U will start only in the 2nd week of the semester.
701-1239-00LAerosols I: Physical and Chemical PrinciplesW4 credits2V + 1UM. Gysel Beer, U. Baltensperger, E. Weingartner
AbstractAerosols I deals with basic physical and chemical properties of aerosol particles. The importance of aerosols in the atmosphere and in other fields is discussed.
ObjectiveKnowledge of basic physical and chemical properties of aerosol particles and their importance in the atmosphere and in other fields
Contentphysical and chemical properties of aerosols, aerosol dynamics (diffusion, coagulation...), optical properties (light scattering, -absorption, -extinction), aerosol production methods, experimental methods for physical and chemical characterization.
Lecture notesmateriel is distributed during the lecture
Literature- Kulkarni, P., Baron, P. A., and Willeke, K.: Aerosol Measurement - Principles, Techniques, and Applications. Wiley, Hoboken, New Jersey, 2011.
- Hinds, W. C.: Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. John Wiley & Sons, Inc., New York, 1999.
- Colbeck I. (ed.) Physical and Chemical Properties of Aerosols, Blackie Academic & Professional, London, 1998.
- Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Hoboken, John Wiley & Sons, Inc., 2006
Climate History and Paleoclimatology
NumberTitleTypeECTSHoursLecturers
651-4057-00LClimate History and PalaeoclimatologyW3 credits2GH. Stoll, I. Hernández Almeida, L. M. Mejía Ramírez
AbstractClimate history and paleoclimatology explores how the major features of the earth's climate system have varied in the past, and the driving forces and feedbacks for these changes. The major topics include the earth's CO2 concentration and mean temperature, the size and stability of ice sheets and sea level, the amount and distribution of precipitation, and the ocean heat transport.
ObjectiveThe student will be able to describe the factors that regulate the earth's mean temperature and the distribution of different climates over the earth. Students will be able to use and understand the construction of simple quantitative models of the Earth's carbon cycle and temperature in Excel, to solve problems from the long term balancing of sinks and sources of carbon, to the Anthropogenic carbon cycle changes of the Anthropocene. Students will be able to interpret evidence of past climate changes from the main climate indicators or proxies recovered in geological records. Students will be able to use data from climate proxies to test if a given hypothesized mechanism for the climate change is supported or refuted. Students will be able to compare the magnitudes and rates of past changes in the carbon cycle, ice sheets, hydrological cycle, and ocean circulation, with predictions for climate changes over the next century to millennia.
Content1. Overview of elements of the climate system and earth energy balance
2. The Carbon cycle - long and short term regulation and feedbacks of atmospheric CO2. What regulates atmospheric CO2 over long tectonic timescales of millions to tens of millions of years? What are the drivers and feedbacks of transient perturbations like at the latest Palocene? What drives CO2 variations over glacial cycles and what drives it in the Anthropocene?
3. Ice sheets and sea level - What do expansionist glaciers want? What is the natural range of variation in the earth's ice sheets and the consequent effect on sea level? How do cyclic variations in the earth's orbit affect the size of ice sheets under modern climate and under past warmer climates? What conditions the mean size and stability or fragility of the large polar ice caps and is their evidence that they have dynamic behavior? What rates and magnitudes of sea level change have accompanied past ice sheet variations? When is the most recent time of sea level higher than modern, and by how much? What lessons do these have for the future?
4. Atmospheric circulation and variations in the earth's hydrological cycle - How variable are the earth's precipitation regimes? How large are the orbital scale variations in global monsoon systems? Will mean climate change El Nino frequency and intensity? What factors drive change in mid and high-latitude precipitation systems? Is there evidence that changes in water availability have played a role in the rise, demise, or dispersion of past civilizations?
5. The Ocean heat transport - How stable or fragile is the ocean heat conveyor, past and present? When did modern deepwater circulation develop? Will Greenland melting and shifts in precipitation bands, cause the North Atlantic Overturning Circulation to collapse? When and why has this happened before?
Hydrology and Water Cycle
NumberTitleTypeECTSHoursLecturers
701-1251-00LLand-Climate Dynamics Information Restricted registration - show details
Number of participants limited to 36.
W3 credits2GS. I. Seneviratne, E. L. Davin
AbstractThe purpose of this course is to provide fundamental background on the role of land surface processes (vegetation, soil moisture dynamics, land energy and water balances) in the climate system. The course consists of 2 contact hours per week, including lectures, group projects and computer exercises.
ObjectiveThe students can understand the role of land processes and associated feedbacks in the climate system.
Lecture notesPowerpoint slides will be made available
Prerequisites / NoticePrerequisites: Introductory lectures in atmospheric and climate science
Atmospheric physics -> Link
and/or
Climate systems -> Link
701-1253-00LAnalysis of Climate and Weather Data Information W3 credits2GC. Frei
AbstractAn introduction into methods of statistical data analysis in meteorology and climatology. Applications of hypothesis testing, extreme value analysis, evaluation of deterministic and probabilistic predictions, principal component analysis.
Participants understand the theoretical concepts and purpose of methods, can apply them independently and know how to interpret results professionally.
ObjectiveStudents understand the theoretical foundations and probabilistic concepts of advanced analysis tools in meteorology and climatology. They can conduct such analyses independently, and they develop an attitude of scrutiny and an awareness of uncertainty when interpreting results. Participants improve skills in understanding technical literature that uses modern statistical data analyses.
ContentThe course introduces several advanced methods of statistical data analysis frequently used in meteorology and climatology. It introduces the thoretical background of the methods, illustrates their application with example datasets, and discusses complications from assumptions and uncertainties. Generally, the course shall empower students to conduct data analysis thoughtfully and to interprete results critically.

Topics covered: exploratory methods, hypothesis testing, analysis of climate trends, measuring the skill of deterministic and probabilistic predictions, analysis of extremes, principal component analysis and maximum covariance analysis.

The course is divided into lectures and computer workshops. Hands-on experimentation with example data shall encourage students in the practical application of methods and train professional interpretation of results.

R (a free software environment for statistical computing) will be used during the workshop. A short introduction into R will be provided during the course.
Lecture notesDocumentation and supporting material:
- slides used during the lecture
- excercise sets and solutions
- R-packages with software and example datasets for workshop sessions

All material is made available via the lecture web-page.
LiteratureFor complementary reading:
- Wilks D.S., 2011: Statistical Methods in the Atmospheric Science. (3rd edition). Academic Press Inc., Elsevier LTD (Oxford)
- Coles S., 2001: An introduction to statistical modeling of extreme values. Springer, London. 208 pp.
Prerequisites / NoticePrerequisites: Basics in exploratory data analysis, probability calculus and statistics (incl linear regression) (e.g. Mathematik IV: Statistik (401-0624-00L) and Mathematik VI: Angewandte Statistik für Umweltnaturwissenschaften (701-0105-00L)). Some experience in programming (ideally in R). Some elementary background in atmospheric physics and climatology.
102-0237-00LHydrology II Information W3 credits2GP. Burlando, S. Fatichi
AbstractThe course presents advanced hydrological analyses of rainfall-runoff processes. The course is given in English.
ObjectiveTools for hydrological modelling are discussed at the event and continuous scale. The focus is on the description of physical processes and their modelisation with practical examples.
ContentMonitoring of hydrological systems (point and space monitoring, remote sensing). The use of GIS in hydrology (practical applications). General concepts of watershed modelling. Infiltration. IUH models. Event based rainfall-runoff modelling. Continuous rainfall-runoff models (components and prrocesses). Example of modelling with the PRMS model. Calibration and validation of models. Flood routing (unsteady flow, hydrologic routing, examples). The course contains an extensive semester project.
Lecture notesParts of the script for "Hydrology I" are used. Also available are the overhead transparencies used in the lectures. The semester project consists of a two part instruction manual.
LiteratureAdditional literature is presented during the course.
  •  Page  1  of  11 Next page Last page