Search result: Catalogue data in Autumn Semester 2019

Mechanical Engineering Bachelor Information
1. Semester
First Year Examinations: Compulsory Courses
NumberTitleTypeECTSHoursLecturers
401-0261-G0LAnalysis I Information Restricted registration - show details O8 credits5V + 3UA. Steiger
AbstractDifferential and integral calculus for functions of one and several variables; vector analysis; ordinary differential equations of first and of higher order, systems of ordinary differential equations; power series. The mathematical methods are applied in a large number of examples from mechanics, physics and other areas which are basic to engineering.
Learning objectiveIntroduction to the mathematical foundations of engineering sciences, as far as concerning differential and integral calculus.
Lecture notesU. Stammbach: Analysis I/II
Prerequisites / NoticeExercises and online quizzes are an important aspect of this course. Attempts at solving these problems will be honored with a bonus on the final grade. See "Performance assessment" for more information.
401-0171-00LLinear Algebra I Information O3 credits2V + 1UN. Hungerbühler
AbstractLinear algebra is an indispensable tool of engineering mathematics. The course offers an introduction into the theory with many applications. The new notions are practised in the accompanying exercise classes. The course will be continued as Linear algebra II.
Learning objectiveUpon completion of this course, students will be able to recognize linear structures, and to solve corresponding problems in theory and in practice.
ContentSystems of linear equations, Gaussian elimination, solution space, matrices, LR decomposition, Determinants, structure of linear spaces, normed vector spaces, inner products, method of least squares, QR decomposition, introduction to MATLAB, applications
Literature* K. Nipp / D. Stoffer, Lineare Algebra, vdf Hochschulverlag, 5. Auflage 2002
* K. Meyberg / P. Vachenauer, Höhere Mathematik 1, Springer 2003
Prerequisites / NoticeActive participation in the exercises is part of this course. It is expected, that students submit 3/4 of all exercises for control.
151-0501-00LMechanics 1: Kinematics and Statics Restricted registration - show details O5 credits3V + 2UE. Mazza
AbstractBasics: Position of a material point, velocity, kinematics of rigid bodies, forces, reaction principle, mechanical power
Statics: Groups of forces, moments, equilibrium of rigid bodies, reactions at supports, parallel forces, center of gravity, statics of systems, principle of virtual power, trusses, frames, forces in beams and cables, friction
Learning objectiveThe understanding of the fundamentals of statics for engineers and their application in simple settings.
ContentGrundlagen: Lage eines materiellen Punktes; Geschwindigkeit; Kinematik starrer Körper, Translation, Rotation, Kreiselung, ebene Bewegung; Kräfte, Reaktionsprinzip, innere und äussere Kräfte, verteilte Flächen- und Raumkräfte; Leistung

Statik: Aequivalenz und Reduktion von Kräftegruppen; Ruhe und Gleichgewicht, Hauptsatz der Statik; Lagerbindungen und Lagerkräfte, Lager bei Balkenträgern und Wellen, Vorgehen zur Ermittlung der Lagerkräfte; Parallele Kräfte und Schwerpunkt; Statik der Systeme, Behandlung mit Hauptsatz, mit Prinzip der virtuellen Leistungen, statisch unbestimmte Systeme; Statisch bestimmte Fachwerke, ideale Fachwerke, Pendelstützen, Knotengleichgewicht, räumliche Fachwerke; Reibung, Haftreibung, Gleitreibung, Gelenk und Lagerreibung, Rollreibung; Seilstatik; Beanspruchung in Stabträgern, Querkraft, Normalkraft, Biege- und Torsionsmoment
Lecture notesÜbungsblätter
LiteratureSayir, M.B., Dual J., Kaufmann S., Mazza E., Ingenieurmechanik 1: Grundlagen und Statik, Springer
151-0711-00LEngineering Materials and Production I Restricted registration - show details O4 credits4GK. Wegener
AbstractThe lecture covers the structure and the properties of metallic materials. In the focus are the branches: microscopic structure; thermally activated processes; solidification; elastic, plastic deformation, creep. Generally the lecture also refers to manufacturing, to the processing, and application of the concerning materials.
Learning objectiveUnderstanding the basics of metallic materials for engineers who are confronted with material decisions in design and production.
ContentThe lecture covers the structure and the properties of metallic materials. In the focus are the branches: microscopic structure as ideal and real structure, alloying, thermally activated processes e.g. diffusion, recovery, recrystallisation, solidification, elastic and plastic deformation and creep. Generally the lecture also refers to manufacturing, to the processing, and application of the concerning materials.
Lecture notesyes
151-0301-00LMachine ElementsO2 credits1V + 1UM. Meboldt, Q. Lohmeyer
AbstractIntroduction to machine elements and mechanical systems as basics of product development. Case studies of their application in products and systems.
Learning objectiveThe students get an overview of the main mechanical components (machine elements) which are used in mechanical engineering. Selected examples will demonstrate how these can be assembled into functional parts and complete systems such as machinery, tools or actuators. At the same time, also the problem of production (production-oriented design) is discussed.
In concurrent lectures / exercises "technical drawing and CAD" the design implementation will be practiced.
Content- Innovation Process: A Quick Overview
- Stages of the planning and design process
- Requirements for a design and technical implementation
- Choice of materials - Basic principles of a material-specific design
- Manufacturing process - fundamentals of a production-oriented design
- Connections, fuses, seals
- Machine-standard elements
- Storage & guides
- Transmission and its components
- Drives

The idea of machine elements is complemented by case studies and illustrated.
Lecture notesThe lecture slides will be published beforehand on the website of the pd|z.
Prerequisites / NoticeFor Bachelor studies in Mechanical and Process Engineering, the lecture "Maschinenelemente" (HS) is examined together with "Innovationsprozess" (FS) in the exam "Basisprüfung Maschinenelemente and Innovationsprozess".
529-0010-00LChemistry Restricted registration - show details O3 credits2V + 1UC. Mondelli
AbstractThis is a general chemistry course aimed at first year undergraduate students in the Department of Mechanical and Process Engineering (D-MAVT).
Learning objectiveThe aims of the course are as follows:
1) To provide a thorough understanding of the basic principles of chemistry and its application.
2) To develop an understanding of the atomic and molecular nature of matter and of the chemical reactions that describe its transformations.
3) To emphasize areas considered most relevant in an engineering context.
ContentElectronic structure of atoms, chemical bonding, molecular geometry and bonding theories, gases, thermodynamics, chemical thermodynamics, chemical kinetics, equilibria, acids and bases, solutions and intermolecular forces, redox- and electrochemistry.
Lecture notesSlides are available prior to every lecture and can be downloaded from https://ilias-app2.let.ethz.ch
LiteratureThe course is based on "Chemistry The Central Science" by Brown, LeMay, Bursten, Murphy, Woodward, and Stoltzfus. Pearson, 14th Edition in SI units (global edition).
Additional First Year Courses
NumberTitleTypeECTSHoursLecturers
151-0321-00LTechnical Drawing and CAD Restricted registration - show details
Only for Mechanical Engineering BSc.
O4 credits4GK. Shea
AbstractFundamentals of Technical Drawing and Computer Aided Design (CAD). Introduction to the design process and sketching. Create and read technical drawings. Create 3D models in CAD and fabricate them directly using additive manufacturing (3D printing).
Learning objectiveThe lecture and exercises teach the fundamentals of technical drawing and CAD. After taking the course students will be able to create accurate technical drawings of parts and assemblies as well as read them. Students will also be able to create models of parts and assemblies in a 3D, feature-based CAD system. They will understand the links with simulation, product data management (PDM) and additive manufacturing.
ContentIntroduction to Engineering Design
Sketching in Engineering Design

Technical Drawing:
- projections and views
- cuts
- notations
- primitives
- ISO norm elements
- dimensioning
- tolerances
- assemblies
- documentation

CAD:
- CAD basics
- CAD modeling methods
- sketch modeling
- modeling operations
- feature-based modeling
- assemblies
- creating 2D drawings from 3D parts
- links to simulation, e.g. kinematics
- links to model variants and Product Data Management (PDM)
- links to additive manufacturing (3D printing)
Lecture notesLecture slides and exercise handouts are available on the course Moodle website: https://moodle-app2.let.ethz.ch/course/index.php?categoryid=56
LiteratureIn addition to the lecture material the following books are recommended (only in German):

TZ
Technisches Zeichnen: selbstständig lernen und effektiv üben
Susanna Labisch und Christian Weber
2008 Vieweg
ISBN: 978-3-8348-0312-2 ;ISBN: 978-3-8348-9451-9 (eBook)
eBook (accessible from the ETH domain): http://link.springer.com/book/10.1007/978-3-8348-9451-9/page/1

VSM Normen-Auszugs 2010
14. Auflage, ISBN 978-3-03709-049-7
(kann in den Übungen bestellt und gekauft werden)

CAD
Marcel Schmid
CAD mit NX: NX 8
J.Schlembach Fachverlag
ISBN: 978-3-935340-72-4
Prerequisites / NoticeThis course is given as a lecture (1h /week) and an exercise (3h/week). Students are split into working groups for the exercises with a maximum of 20 students per group.

Semester Fee
A fee is charged for printed copies of the course handouts.

This course is only passed if 9 out of 11 exercises are submitted during the semester and the final test is passed. If an insufficient number of exercises are submitted or the final test is not passed, then the course is failed («no show»).
First Year Optional Colloquia
NumberTitleTypeECTSHoursLecturers
151-0501-02LMechanics 1: Kinematics and Statics (Colloquium)Z0 credits1KR. Hopf
AbstractBasics: Position of a material point, velocity, kinematics of rigid bodies, forces, reaction principle, mechanical power
Statics: Groups of forces, moments, equilibrium of rigid bodies, reactions at supports, parallel forces, center of gravity, statics of systems, principle of virtual power, trusses, frames, forces in beams and cables, friction
Learning objectiveThe understanding of the fundamentals of Statics for engineers and their application in simple settings.
ContentBasics: Position of a material point; velocity; kinematics of rigid bodies; translation, rotation, planar motion; forces, action-reaction principle, internal and external forces, distributed forces; mechanical power.
Statics: equivalence and reduction of groups of forces; rest and equilibrium; basic theorem of statics; kinematic and static boundary conditions, applications to supports and clamps of rods and beams; procedures for determination of forces at supports and clamps; parallel forces and centre of gravity; statics of systems, solution using basic theorem and using the principle of virtual power, statically indeterminate systems; statically determinate truss structures, ideal truss structures, nodal point equilibrium, methods for truss force determination; friction, static friction, sliding friction, friction at joints and supports, rolling resistance; forces in cables; beam loading, force and moment vector.
Lecture notesÜbungsblätter
LiteratureSayir, M.B., Dual J., Kaufmann S., Ingenieurmechanik 1: Grundlagen und Statik, Teubner
3. Semester
Compulsory Courses
Examination Block 1
NumberTitleTypeECTSHoursLecturers
401-0363-10LAnalysis III Information O3 credits2V + 1UF. Da Lio
AbstractIntroduction to partial differential equations. Differential equations which are important in applications are classified and solved. Elliptic, parabolic and hyperbolic differential equations are treated. The following mathematical tools are introduced: Laplace transforms, Fourier series, separation of variables, methods of characteristics.
Learning objectiveMathematical treatment of problems in science and engineering. To understand the properties of the different types of partial differential equations.
ContentLaplace Transforms:
- Laplace Transform, Inverse Laplace Transform, Linearity, s-Shifting
- Transforms of Derivatives and Integrals, ODEs
- Unit Step Function, t-Shifting
- Short Impulses, Dirac's Delta Function, Partial Fractions
- Convolution, Integral Equations
- Differentiation and Integration of Transforms

Fourier Series, Integrals and Transforms:
- Fourier Series
- Functions of Any Period p=2L
- Even and Odd Functions, Half-Range Expansions
- Forced Oscillations
- Approximation by Trigonometric Polynomials
- Fourier Integral
- Fourier Cosine and Sine Transform

Partial Differential Equations:
- Basic Concepts
- Modeling: Vibrating String, Wave Equation
- Solution by separation of variables; use of Fourier series
- D'Alembert Solution of Wave Equation, Characteristics
- Heat Equation: Solution by Fourier Series
- Heat Equation: Solutions by Fourier Integrals and Transforms
- Modeling Membrane: Two Dimensional Wave Equation
- Laplacian in Polar Coordinates: Circular Membrane, Fourier-Bessel Series
- Solution of PDEs by Laplace Transform
Lecture notesLecture notes by Prof. Dr. Alessandra Iozzi:
https://polybox.ethz.ch/index.php/s/D3K0TayQXvfpCAA
LiteratureE. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 10. Auflage, 2011

C. R. Wylie & L. Barrett, Advanced Engineering Mathematics, McGraw-Hill, 6th ed.

S.J. Farlow, Partial Differential Equations for Scientists and Engineers, Dover Books on Mathematics, NY.

G. Felder, Partielle Differenzialgleichungen für Ingenieurinnen und Ingenieure, hypertextuelle Notizen zur Vorlesung Analysis III im WS 2002/2003.

Y. Pinchover, J. Rubinstein, An Introduction to Partial Differential Equations, Cambridge University Press, 2005

For reference/complement of the Analysis I/II courses:

Christian Blatter: Ingenieur-Analysis
https://people.math.ethz.ch/~blatter/dlp.html
151-0503-00LDynamicsO6 credits4V + 2UD. Kochmann, P. Tiso
AbstractDynamics of particles and rigid bodies: Motion of a single particle, motion of systems of particles, 2D and 3D motion of rigid bodies, vibrations
Learning objectiveThis course provides Bachelor students of mechanical and civil engineering with fundamental knowledge of kinematics and dynamics of mechanical systems. By studying the motion of a single particle, of systems of particles and of rigid bodies, we introduce essential concepts such as work and energy, equations of motion, and forces and torques. Further topics include stability of equilibria and vibrations. Examples presented in the lectures and weekly exercise lessons help students learn basic techniques that are necessary for advanced courses and work on engineering applications.
Content1. Motion of a single particle: kinematics (trajectory, velocity, acceleration), forces and torques, active and reaction forces, balance of linear and angular momentum, work-energy balance, conservative systems, equations of motion.
2. Motion of systems of particles: internal and external forces, balance of linear and angular momentum, work-energy balance, rigid systems of particles, particle collisions.
3. Motion of rigid bodies in 2D and 3D: kinematics (angular velocity, velocity and acceleration transfer, instantaneous center and axis of rotation), balance of linear and angular momentum, work-energy balance, angular momentum transport, inertial vs. moving reference frames, apparent forces, Euler's equations.
4. Vibrations: Lagrange equations, single-DOF oscillations (natural frequency, free-, damped-, and forced response), multi-DOF oscillations (natural frequencies, eigenmodes, free-, damped-, and forced response), examples of vibrations in deformable bodies.
Lecture notesTyped course material will be available. Students are responsible for preparing their own notes in class.
LiteratureTyped course material will be available
Prerequisites / NoticePlease log in to moodle ( https://moodle-app2.let.ethz.ch/auth/shibboleth/login.php ), search for "Dynamics", and join the course there. All exercises sheets and the typed lecture material will be uploaded there.
151-0303-00LDimensioning IO3 credits3GE. Mazza, R. Hopf
AbstractIntroduction to Dimensioning of components and machine parts. Basic structural theories are introduced and a short introduction to finite elements is given. Further, elements from fracture mechanics, plasticity and stability of structures are presented.
Learning objectiveThe goal of the lecture is to build on and extend the theories from Mechanics 2. Students learn how to implement adequate models for practical dimensioning problems in mechanical engineering and how to solve and critically interpret these models.
Content- Basic problem of continuum mechanics
- Structural theories
- Introduction to finite element methods
- Strength of materials
- Fatigue
- Stability of structures
Lecture notesWill be announced during the first lecture.
LiteratureWill be announced during the first lecture.
151-0051-00LThermodynamics IO4 credits2V + 2UD. Poulikakos, C. Müller
AbstractIntroduction to the fundamentals of technical thermodynamics.
Learning objectiveIntroduction to the fundamentals of technical thermodynamics.
Content1. Konzepte und Definitionen
2. Der erste Hauptsatz, der Begriff der Energie und Anwendungen für geschlossene Systeme
3. Eigenschaften reiner kompressibler Substanzen, quasistatische Zustandsänderungen
4. Elemente der kinetischen Gastheorie
5. Der erste Hauptsatz in offenen Systemen - Energieanalyse in einem Kontrollvolumen
6. Der zweite Hauptsatz - Der Begriff der Entropie
7. Nutzbarkeit der Energie - Exergie
8. Thermodynamische Beziehungen für einfache, kompressible Substanzen.
Lecture notesavailable
LiteratureM.J. Moran, H.N Shapiro, D.D. Boettner and M.B. Bailey, Principles of Engineering Thermodynamics, 8th Edition, John Wiley and Sons, 2015.

H.D. Baehr and S. Kabelac, Thermodynamik, 15. Auflage, Springer Verlag, 2012.
151-0591-00LControl Systems I Information O4 credits2V + 2UL. Guzzella
AbstractAnalysis and controller synthesis for linear time invariant systems with one input and one output signal (SISO); transition matrix; stability; controllability; observability; Laplace transform; transfer functions; transient and steady state responses. PID control; dynamic compensators; Nyquist theorem.
Learning objectiveIdentify the role and importance of control systems in everyday life. Obtain models of single-input single-output (SISO) linear time invariant (LTI) dynamical systems. Linearization of nonlinear models. Interpret stability, observability and controllability of linear systems. Describe and associate building blocks of linear systems in time and frequency domain with equations and graphical representations (Bode plot, Nyquist plot, root locus). Design feedback controllers to meet stability and performance requirements for SISO LTI systems. Explain differences between expected and actual control results. Notions of robustness and other nuisances such as discrete time implementation.
ContentModeling and linearization of dynamic systems with single input and output signals. State-space description. Analysis (stability, reachability, observability, etc.) of open-loop systems. Laplace transformation, systems analysis in the frequency domain. Transfer functions and analysis of the influence of its poles and zeros on the system's dynamic behavior. Frequency response. Analysis of closed-loop systems using the Nyquist criterion. Formulation of performance constraints. Specification of closed-loop system behavior. Synthesis of elementary closed-loop control systems (PID, lead/lag compensation, loop shaping). Discrete time state space representation and stability analysis.
Lecture notesAnalysis and Synthesis of Single-Input Single-Output Control Systems, Lino Guzzella, vdf Hochschulverlag. The textbook is offered for sale at the beginning of the semester.

In addition, the slides of the lecture will be put online.
LiteratureAnalysis and Synthesis of Single-Input Single-Output Control Systems, Lino Guzzella, vdf Hochschulverlag. The textbook is offered for sale at the beginning of the semester.
Prerequisites / NoticeBasic knowledge of (complex) analysis and linear algebra.
Examination Block 2
NumberTitleTypeECTSHoursLecturers
402-0033-10LPhysics IO6 credits4V + 2UC. Degen
AbstractThis is a two-semester course introducing students into the foundations of Modern Physics. Topics include electricity and magnetism, light, waves, quantum physics, solid state physics, and semiconductors. Selected topics with important applications in industry will also be considered.
Learning objectiveThe lecture is intended to promote critical, scientific thinking. Key concepts of Physics will be acquired, with a focus on technically relevant applications. At the end of the two semesters, students will have a good overview over the topics of classical and modern Physics.
ContentElectric and magnetic fields, current, magnetism, Maxwell's equations, concept of light, classical optics, waves.
Lecture notesNotes from lectures will be available (in German).
LiteratureFriedhelm Kuypers
Physik fuer Ingenieure und Naturwissenschaftler
Band 2: Elektrizitaet, Optik, Wellen, 2012, 436 Seiten, ca. 25 Euro.

Paul A. Tipler, Gene Mosca, Michael Basler und Renate Dohmen
Physik für Wissenschaftler und Ingenieure
Spektrum Akademischer Verlag, 2009, 1636 Seiten, ca. 80 Euro.
Engineering Tools
The Engineering Tools courses are for MAVT Bachelor’s degree students only.
NumberTitleTypeECTSHoursLecturers
151-0042-01LEngineering Tool: FEM-Programs Information Restricted registration - show details
The Engineering Tools courses are for MAVT Bachelor’s degree students only.
W+0.4 credits1KB. Berisha
AbstractThe course "Introduction to FEM programs" familiarizes the students with performing of simple structural analyses with the finite-element method.
Learning objectiveBecoming familiar with using a modern finite-element program. Learn how to perform structural analyses of complex parts designed with CAD. Critical results interpretation by way of convergence analysis.
ContentConsidered programs: ABAQUS/CAE
Lecture notesCourse material: The material is based on the course in spring semester 2019 (Dr. Gerald Kress) and are complemented according to our needs.
LiteratureNo textbooks required
Prerequisites / NoticeDer Kurs findet in einem Hörsaal statt und es stehen keine Rechner zur Verfügung. Es wird empfohlen, dass pro zwei Studierenden mindestens ein Laptop mit installierter Abaqus/CAE Software mitgebracht wird. Für weitere Informationen siehe "Ankündigungen" in MOODLE.
252-0863-00LEngineering Tool: Advanced Programming with C++ Information Restricted registration - show details
All Engineering Tool courses are for MAVT-Bachelor students only.
W+0.4 credits1KF. Friedrich Wicker
AbstractThe programming model of C++ is discussed in some depth. In particular the mechanisms for efficient memory management and generic programming with C++ are covered.
Learning objectiveAbility to implement memory-efficient data structures and efficient generic algorithms using C++.
ContentVectors, pointers and iterators, range for, keyword auto, a class for vectors, subscript-operator, move-construction and iteration. RAII (Resouce Allocation is Initialization) Principle, Templates and Generic Programming, Functors and Lambda Expressions.
Lecture notesDetailled, bilingual slides of the lectures will be made available.
LiteratureB.Stroustrup, The C++ Programming Language (4th Edition), Addison Wesley 2013.
Prerequisites / NoticeLecture Series Informatik I 252-0832-00L or equivalent knowledge in programming with C++.

Course can only be taken if the programming project is executed and submitted. If no solution to the programming project is submitted, the course is considered failed («no show»).
5. Semester
Compulsory Courses Examination Block 3
NumberTitleTypeECTSHoursLecturers
151-0261-00LThermodynamics IIIO3 credits2V + 1UR. S. Abhari, A. Steinfeld
AbstractTechnical applications of engineering thermodynamics. Extension of thermodynamical fundamentals taught in Thermodynamics I and II.
Learning objectiveUnderstand and apply thermodynamic principles and processes for use in a range of cycles used commonly in practice.
ContentRadiation Heat Transfer, Heat Exchangers, Ideal Gas Mixtures & Psychrometry, Steam Processes, Gas Power Processes, Internal Combustion Engines, Gas Turbine Processes, Refrigeration & Heat Pumps
151-0103-00LFluid Dynamics IIO3 credits2V + 1UP. Jenny
AbstractTwo-dimensional irrotational (potential) flows: stream function and potential, singularity method, unsteady flow, aerodynamic concepts.
Vorticity dynamics: vorticity and circulation, vorticity equation, vortex theorems of Helmholtz and Kelvin.
Compressible flows: isentropic flow along stream tube, normal and oblique shocks, Laval nozzle, Prandtl-Meyer expansion, viscous effects.
Learning objectiveExpand basic knowledge of fluid dynamics.
Concepts, phenomena and quantitative description of irrotational (potential), rotational, and one-dimensional compressible flows.
ContentTwo-dimensional irrotational (potential) flows: stream function and potential, complex notation, singularity method, unsteady flow, aerodynamic concepts.
Vorticity dynamics: vorticity and circulation, vorticity equation, vortex theorems of Helmholtz and Kelvin.
Compressible flows: isentropic flow along stream tube, normal and oblique shocks, Laval nozzle, Prandtl-Meyer expansion, viscous effects.
Lecture notesLecture notes are available (in German).
(See also info on literature below.)
LiteratureRelevant chapters (corresponding to lecture notes) from the textbook

P.K. Kundu, I.M. Cohen, D.R. Dowling: Fluid Mechanics, Academic Press, 5th ed., 2011 (includes a free copy of the DVD "Multimedia Fluid Mechanics")

P.K. Kundu, I.M. Cohen, D.R. Dowling: Fluid Mechanics, Academic Press, 6th ed., 2015 (does NOT include a free copy of the DVD "Multimedia Fluid Mechanics")
Prerequisites / NoticeAnalysis I/II, Knowledge of Fluid Dynamics I, thermodynamics of ideal gas
Electives
NumberTitleTypeECTSHoursLecturers
151-0573-00LSystem Modeling Information W4 credits2V + 2UL. Guzzella
AbstractIntroduction to system modeling for control. Generic modeling approaches based on first principles, Lagrangian formalism, energy approaches and experimental data. Model parametrization and parameter estimation. Basic analysis of linear and nonlinear systems.
Learning objectiveLearn how to mathematically describe a physical system or a process in the form of a model usable for analysis and control purposes.
ContentThis class introduces generic system-modeling approaches for control-oriented models based on first principles and experimental data. The class will span numerous examples related to mechatronic, thermodynamic, chemistry, fluid dynamic, energy, and process engineering systems. Model scaling, linearization, order reduction, and balancing. Parameter estimation with least-squares methods. Various case studies: loud-speaker, turbines, water-propelled rocket, geostationary satellites, etc. The exercises address practical examples.
Lecture notesThe handouts in English will be sold in the first lecture.
LiteratureA list of references is included in the handouts.
151-0575-01LSignals and Systems Information W4 credits2V + 2UA. Carron
AbstractSignals arise in most engineering applications. They contain information about the behavior of physical systems. Systems respond to signals and produce other signals. In this course, we explore how signals can be represented and manipulated, and their effects on systems. We further explore how we can discover basic system properties by exciting a system with various types of signals.
Learning objectiveMaster the basics of signals and systems. Apply this knowledge to problems in the homework assignments and programming exercise.
ContentDiscrete-time signals and systems. Fourier- and z-Transforms. Frequency domain characterization of signals and systems. System identification. Time series analysis. Filter design.
Lecture notesLecture notes available on course website.
Prerequisites / NoticeControl Systems I is helpful but not required.
  •  Page  1  of  7 Next page Last page     All