Search result: Catalogue data in Spring Semester 2019
Environmental Sciences Master | ||||||
Major in Atmosphere and Climate | ||||||
Electives | ||||||
Climate History and Paleoclimatology | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|
701-1280-00L | Self-learning Course on Advanced Topics in Atmospheric and Climate Science Please contact one of the professors listed under prerequisites/notice if you plan to take this course. Students are allowed to enroll in both courses 701-1280-00L & 701-1281-00L Self-learning Course on Advanced Topics in Atmospheric and Climate Science but have to choose different supervisors. | W | 3 credits | 6A | Supervisors | |
Abstract | This course offers an individual pathway to deepen knowledge and understanding of a specific advanced topic in atmospheric and climate science in one of these fields: - atmospheric chemistry - atmospheric circulation and predictability - atmospheric dynamics - atmospheric physics - climate modeling - climate physics - land-climate dynamics | |||||
Learning objective | The learning goals of this course are threefold: 1) obtain novel insight into an advanced scientific topic, 2) train the self-study competences in particular related to reading of advanced textbooks and writing a concise summary, and 3) gain experience in the scientific interaction with experts. The format of the course is complementary to other types of teaching (lectures and seminars) and addresses skills that are essential for a wide range of professional activities (including a PhD). | |||||
Content | The course has the following elements: Week 1: Selection of specific topic and decision about reading material (textbook chapters and maybe 1-2 review papers) Week 2: General discussion about self-study skills (how to read scientific literature and write summaries; specifics of scientific writing; how to prepare efficient meetings). For the scientific writing, students are encouraged to participate in an online training course offered by Stanford University: https://lagunita.stanford.edu/courses/Medicine/SciWrite-SP/SelfPaced/about Weeks 6 and 9: Meetings with supervisor to clarify scientific questions Week 12: Hand-in of written summary (4 pages maximum) Week 14: Supervisor provides written feedback to the summary document Week 16: Oral exam about the scientific topic | |||||
Literature | Literature (including book chapters, scientific publications) will be provided by the responsible supervisor in coordination with the student. | |||||
Prerequisites / Notice | Prerequisites depend on the chosen field and include successful completion of the listed lecture courses: • atmospheric dynamics: “Dynamics of large-scale atmospheric flow” (701-1221-00L) • atmospheric chemistry: “Stratospheric Chemistry” (701-1233-00L) or “Tropospheric Chemistry” (701-1234-00L) or “Aerosols I” (402-0572-00L). • atmospheric physics: “Atmospheric Physics” (701-0475-00L) • climate physics: “Klimasysteme” (701-0412-00L) or equivalent • land-climate dynamics: “Land-climate dynamics” (701-1251-00L) • climate modeling: “Numerical modeling of weather and climate” (701-1216-00L) (parallel attendance possible) • atmospheric circulation and predictability: “Dynamics of large-scale atmospheric flow” (701-1221-00L) If you plan to take this course, please contact one of the professors according to your interest. • atmospheric chemistry (Prof. T. Peter) • atmospheric circulation and predictability (Prof. D. Domeisen) • atmospheric dynamics (Prof. H. Wernli) • atmospheric physics (Prof. U. Lohmann) • climate modeling (Prof. C. Schär) • climate physics (Prof. R. Knutti) • land-climate dynamics (Prof. S. Seneviratne) | |||||
Weather Systems and Atmospheric Dynamics | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
701-1236-00L | Measurement Methods in Meteorology and Climate Research | W | 1 credit | 1V | M. Hirschi, D. Michel, S. I. Seneviratne | |
Abstract | Physical, technical, and theoretical basics for measuring physical quantities in the atmosphere. Considerations related to the planning of observation campaigns and to data evaluation. | |||||
Learning objective | Become sensitive for specific problems when making measurements in the atmosphere under severe environmental conditions. Know the different methods and techniques, develop criteria for the choice of the optimal measurement method for a given problem. Find the optimal observation strategy in terms of choice of instrument, frequency of observation, accuracy, etc. | |||||
Content | Problems related to time series analysis, sampling theorem, time constant and sampling rate. Theoretical analysis of different sensors for temperature, humidity, wind, and pressure. Discussion of effects disturbing the instruments. Principles of active and passive remote sensing. Measuring turbulent fluxes (e.g. heatflux) using eddy-correlation technique. Discussion of technical realizations of complex observing systems (radiosondes, automatic weather stations, radar, wind profilers). Demonstration of instruments. | |||||
Lecture notes | Students can download a copy of the lectures as PDF-files. | |||||
Literature | - Emeis, Stefan: Measurement Methods in Atmospheric Sciences, In situ and remote. Bornträger 2010, ISBN 978-3-443-01066-9 - Brock, F. V. and S. J. Richardson: Meteorological Measurement Systems, Oxford University Press 2001, ISBN 0-19-513451-6 - Thomas P. DeFelice: An Introduction to Meteorological Instrumentation and Measurement. Prentice-Hall 2000, 229 p., ISBN 0-13-243270-6 - Fritschen, L.J., Gay L.W.: Environmental Instrumentation, 216 p., Springer, New York 1979. - Lenschow, D.H. (ed.): Probing the Atmospheric Boundary Layer, 269 p., American Meteorological Society, Boston MA 1986. - Meteorological Office (publ.): Handbook of Meteorological Instruments, 8 vols., Her Majesty's Stationery Office, London 1980. - Wang, J.Y., Felton, C.M.M.: Instruments for Physical Environmental measurements, 2 vol., 801 p., Kendall/Hunt Publ. Comp., Dubuque Iowa 1975/76. | |||||
Prerequisites / Notice | The lecture focuses on physical atmospheric parameters while lecture 701-0234-00 concentrates on the chemical quantities. The lectures are complementary, together they provide the instrumental basics for the lab course 701-0460-00. Contact hours of the lab course are such that the lectures can be attended (which is recommended). | |||||
701-1258-00L | The Global Atmospheric Circulation Number of participants limited to 30. | W | 1.5 credits | 1G | D. Domeisen | |
Abstract | This course covers the general circulation of the atmosphere. The focus lies on the large-scale dynamics and circulation of the tropics and the global stratosphere, and connections to midlatitudes, including phenomena such as El Nino and sudden stratospheric warming events. | |||||
Learning objective | At the end of the course, students should be able to - explain the reasons for the existence and extent of the global circulation - identify and describe phenomena of the tropical troposphere and the global stratosphere - apply the dynamical mechanisms and theoretical concepts learned in the course to derive the atmospheric general circulation for a given planet | |||||
Content | Hadley Circulation, El Nino Southern Oscillation, Quasi-Biennial Oscillation, Brewer-Dobson Circulation, sudden stratospheric warming events, Rossby wave propagation, polar vortex dynamics, Eliassen-Palm flux | |||||
Prerequisites / Notice | Successful participation of the following lectures are required: 402-0062-00L Physik I 402-0063-00L Physik II 701-0479-00L Umwelt-Fluiddynamik | |||||
701-1266-00L | Weather Discussion Limited number of participants. Preference will be given to students on the masters level in Atmospheric and Climate Science and Environmental Sciences and doctoral students in Environmental Sciences. Prerequisites: Basic knowledge in meteorology is required for this class, students are advised to take courses 702-0473-00L and/or 701-1221-00L before attending this course. | W | 2.5 credits | 2P | H. Wernli | |
Abstract | This three-parts course includes: (i) concise units to update the students knowledge about key aspects of mid-latitude weather systems and numerical weather prediction, (ii) a concrete application of this knowledge to predict and discuss the "weather of the week", and (iii) an in-depth case study analysis, performed in small groups, of a remarkable past weather event. | |||||
Learning objective | Students will learn how to elaborate a weather prediction and to cope with uncertainties of weather (probabilistic) prediction models. They will also learn how to apply theoretical concepts from other lecture courses on atmospheric dynamics to perform a detailed case study of a specific weather event, using state-of-the-art observational and model-derived products and datasets. | |||||
701-1280-00L | Self-learning Course on Advanced Topics in Atmospheric and Climate Science Please contact one of the professors listed under prerequisites/notice if you plan to take this course. Students are allowed to enroll in both courses 701-1280-00L & 701-1281-00L Self-learning Course on Advanced Topics in Atmospheric and Climate Science but have to choose different supervisors. | W | 3 credits | 6A | Supervisors | |
Abstract | This course offers an individual pathway to deepen knowledge and understanding of a specific advanced topic in atmospheric and climate science in one of these fields: - atmospheric chemistry - atmospheric circulation and predictability - atmospheric dynamics - atmospheric physics - climate modeling - climate physics - land-climate dynamics | |||||
Learning objective | The learning goals of this course are threefold: 1) obtain novel insight into an advanced scientific topic, 2) train the self-study competences in particular related to reading of advanced textbooks and writing a concise summary, and 3) gain experience in the scientific interaction with experts. The format of the course is complementary to other types of teaching (lectures and seminars) and addresses skills that are essential for a wide range of professional activities (including a PhD). | |||||
Content | The course has the following elements: Week 1: Selection of specific topic and decision about reading material (textbook chapters and maybe 1-2 review papers) Week 2: General discussion about self-study skills (how to read scientific literature and write summaries; specifics of scientific writing; how to prepare efficient meetings). For the scientific writing, students are encouraged to participate in an online training course offered by Stanford University: https://lagunita.stanford.edu/courses/Medicine/SciWrite-SP/SelfPaced/about Weeks 6 and 9: Meetings with supervisor to clarify scientific questions Week 12: Hand-in of written summary (4 pages maximum) Week 14: Supervisor provides written feedback to the summary document Week 16: Oral exam about the scientific topic | |||||
Literature | Literature (including book chapters, scientific publications) will be provided by the responsible supervisor in coordination with the student. | |||||
Prerequisites / Notice | Prerequisites depend on the chosen field and include successful completion of the listed lecture courses: • atmospheric dynamics: “Dynamics of large-scale atmospheric flow” (701-1221-00L) • atmospheric chemistry: “Stratospheric Chemistry” (701-1233-00L) or “Tropospheric Chemistry” (701-1234-00L) or “Aerosols I” (402-0572-00L). • atmospheric physics: “Atmospheric Physics” (701-0475-00L) • climate physics: “Klimasysteme” (701-0412-00L) or equivalent • land-climate dynamics: “Land-climate dynamics” (701-1251-00L) • climate modeling: “Numerical modeling of weather and climate” (701-1216-00L) (parallel attendance possible) • atmospheric circulation and predictability: “Dynamics of large-scale atmospheric flow” (701-1221-00L) If you plan to take this course, please contact one of the professors according to your interest. • atmospheric chemistry (Prof. T. Peter) • atmospheric circulation and predictability (Prof. D. Domeisen) • atmospheric dynamics (Prof. H. Wernli) • atmospheric physics (Prof. U. Lohmann) • climate modeling (Prof. C. Schär) • climate physics (Prof. R. Knutti) • land-climate dynamics (Prof. S. Seneviratne) | |||||
Atmospheric Composition and Cycles | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
701-0234-00L | Atmospheric Chemistry: Instruments and Measuring Techniques | W | 1 credit | 1V | U. Krieger | |
Abstract | Measuring Techniques: Environmental Monitoring, Trace Gas Detection, Remote Sensing, Aerosol Characterization, Techniques used in the laboratory. | |||||
Learning objective | Find out about the specific problems connected to composition measurements in the atmosphere. Working out criteria for selecting an optimal measuring strategy. Acquiring knowledge about different measuring methods their spectroscopic principles and of some specific instruments. | |||||
Content | Es werden Methoden und Geräte vorgestellt und theoretisch analysiert, die in atmosphärenchemischen Messungen Verwendung finden: Geräte zur Überwachung im Rahmen der Luftreinhalteverordnung, Spurengasanlysemethoden, "remote sensing", Aerosolmessgeräte, Messverfahren bei Labormessungen zu atmosphärischen Fragestellungen. | |||||
Literature | B. J. Finnlayson-Pitts, J. N. Pitts, "Chemistry of the Upper and Lower Atmosphere", Academic Press, San Diego, 2000 | |||||
Prerequisites / Notice | Methodenvorlesung zu den Praktika 701-0460-00 und 701-1230-00. Die Kontaktzeiten in diesen Praktika sind so abgestimmt, dass der (empfohlene) Besuch der Vorlesung möglich ist. Voraussetzungen: Atmosphärenphysik I und II | |||||
701-1244-00L | Aerosols II: Applications in Environment and Technology | W | 4 credits | 2V + 1U | J. Slowik, U. Baltensperger, M. Gysel Beer | |
Abstract | Major topics: Important sources and sinks of atmospheric aerosols and their importance for men and environment. Particle emissions from combustion systems, means to reduce emissions like particle filters. | |||||
Learning objective | Profound knowledge about aerosols in the atmosphere and applications of aerosols in technology | |||||
Content | Atmospheric aerosols: important sources and sinks, wet and dry deposition, chemical composition, importance for men and environment, interaction with the gas phase, influence on climate. Technical aerosols: combustion aerosols, techniques to reduce emissions, application of aerosols in technology | |||||
Lecture notes | Information is distributed during the lectures | |||||
Literature | - Colbeck I. (ed.) Physical and Chemical Properties of Aerosols, Blackie Academic & Professional, London, 1998. - Seinfeld, J.H., and S.N. Pandis, Atmospheric chemistry and physics, John Wiley, New York, (1998). | |||||
651-4004-00L | The Global Carbon Cycle - Reduced | W | 3 credits | 2G | T. I. Eglinton, M. Lupker | |
Abstract | The carbon cycle connects different reservoirs of C, including life on Earth, atmospheric CO2, and economically important geological reserves of C. Much of this C is in reduced (organic) form, and is composed of complex chemical structures that reflect diverse biological activity, processes and transformations. | |||||
Learning objective | A wealth of information is held within the complex organic molecules, both in the context of the contemporary carbon cycle and its links to is other biogeochemical cycles, as well as in relation to Earth's history, the evolution of life and climate on this planet. In this course we will learn about the role of reduced forms of carbon in the global cycle, how these forms of carbon are produced, move around the planet, and become sequestered in the geological record, and how they can be used to infer biological activity and conditions on this planet in the geologic past. The course encompasses a range of spatial and temporal scales, from molecular to global, and from the contemporary environment to earliest life. | |||||
Prerequisites / Notice | This course and the lecture course "651-4044-00L Geomicrobiology and Biogeochemistry" https://lms.uzh.ch/url/RepositoryEntry/16135979092?guest=true&lang=en are good preparations for the combined Field-Lab Course ("651-4044-02 P Geomicrobiology and Biogeochemistry Field Course" and "651-4044-01 P Geomicrobiology and Biogeochemistry Lab Practical"). Details under https://lms.uzh.ch/url/RepositoryEntry/16135979094?guest=true&lang=en | |||||
701-1235-00L | Cloud Microphysics Number of participants limited to 8. Priority is given to PhD students of D-USYS majoring Atmospheric and Climate Science. Open spaces are availble to Master students in Atmospheric and Climate Science & Master in Environmental Sciences. All participants will be on the waiting list at first. Enrollment is possible until February 17th. The waiting list is active until February 19th. All students will be informed on February 20th at the latest if they can participate in the lecture. The lecture takes place if a minimum of 5 students register for it. | W | 4 credits | 2V + 1U | U. Lohmann, Z. A. Kanji | |
Abstract | Clouds are a fascinating atmospheric phenomenon central to the hydrological cycle and the Earth`s climate. Interactions between cloud particles can result in precipitation, glaciation or evaporation of the cloud depending on its microstructure and microphysical processes. | |||||
Learning objective | The learning objective of this course is that students understand the formation of clouds and precipitation and can apply learned principles to interpret atmospheric observations of clouds and precipitation. | |||||
Content | see: http://www.iac.ethz.ch/edu/courses/master/modules/cloud-microphysics.html | |||||
Lecture notes | This course will be designed as a reading course in a small group of 8 students maximum. It will be based on the textbook below. The students are expected to read chapters of this textbook prior to the class so that open issues, fascinating and/or difficult aspects can be discussed in depth. | |||||
Literature | Pao K. Wang: Physics and dynamics of clouds and precipitation, Cambridge University Press, 2012 | |||||
Prerequisites / Notice | Target group: PhD and Master students in Atmosphere and Climate | |||||
701-1280-00L | Self-learning Course on Advanced Topics in Atmospheric and Climate Science Please contact one of the professors listed under prerequisites/notice if you plan to take this course. Students are allowed to enroll in both courses 701-1280-00L & 701-1281-00L Self-learning Course on Advanced Topics in Atmospheric and Climate Science but have to choose different supervisors. | W | 3 credits | 6A | Supervisors | |
Abstract | This course offers an individual pathway to deepen knowledge and understanding of a specific advanced topic in atmospheric and climate science in one of these fields: - atmospheric chemistry - atmospheric circulation and predictability - atmospheric dynamics - atmospheric physics - climate modeling - climate physics - land-climate dynamics | |||||
Learning objective | The learning goals of this course are threefold: 1) obtain novel insight into an advanced scientific topic, 2) train the self-study competences in particular related to reading of advanced textbooks and writing a concise summary, and 3) gain experience in the scientific interaction with experts. The format of the course is complementary to other types of teaching (lectures and seminars) and addresses skills that are essential for a wide range of professional activities (including a PhD). | |||||
Content | The course has the following elements: Week 1: Selection of specific topic and decision about reading material (textbook chapters and maybe 1-2 review papers) Week 2: General discussion about self-study skills (how to read scientific literature and write summaries; specifics of scientific writing; how to prepare efficient meetings). For the scientific writing, students are encouraged to participate in an online training course offered by Stanford University: https://lagunita.stanford.edu/courses/Medicine/SciWrite-SP/SelfPaced/about Weeks 6 and 9: Meetings with supervisor to clarify scientific questions Week 12: Hand-in of written summary (4 pages maximum) Week 14: Supervisor provides written feedback to the summary document Week 16: Oral exam about the scientific topic | |||||
Literature | Literature (including book chapters, scientific publications) will be provided by the responsible supervisor in coordination with the student. | |||||
Prerequisites / Notice | Prerequisites depend on the chosen field and include successful completion of the listed lecture courses: • atmospheric dynamics: “Dynamics of large-scale atmospheric flow” (701-1221-00L) • atmospheric chemistry: “Stratospheric Chemistry” (701-1233-00L) or “Tropospheric Chemistry” (701-1234-00L) or “Aerosols I” (402-0572-00L). • atmospheric physics: “Atmospheric Physics” (701-0475-00L) • climate physics: “Klimasysteme” (701-0412-00L) or equivalent • land-climate dynamics: “Land-climate dynamics” (701-1251-00L) • climate modeling: “Numerical modeling of weather and climate” (701-1216-00L) (parallel attendance possible) • atmospheric circulation and predictability: “Dynamics of large-scale atmospheric flow” (701-1221-00L) If you plan to take this course, please contact one of the professors according to your interest. • atmospheric chemistry (Prof. T. Peter) • atmospheric circulation and predictability (Prof. D. Domeisen) • atmospheric dynamics (Prof. H. Wernli) • atmospheric physics (Prof. U. Lohmann) • climate modeling (Prof. C. Schär) • climate physics (Prof. R. Knutti) • land-climate dynamics (Prof. S. Seneviratne) | |||||
Hydrology and Water Cycle | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
701-1216-00L | Numerical Modelling of Weather and Climate | W | 4 credits | 3G | C. Schär, N. Ban | |
Abstract | The course provides an introduction to weather and climate models. It discusses how these models are built addressing both the dynamical core and the physical parameterizations, and it provides an overview of how these models are used in numerical weather prediction and climate research. As a tutorial, students conduct a term project and build a simple atmospheric model using the language PYTHON. | |||||
Learning objective | At the end of this course, students understand how weather and climate models are formulated from the governing physical principles, and how they are used for climate and weather prediction purposes. | |||||
Content | The course provides an introduction into the following themes: numerical methods (finite differences and spectral methods); adiabatic formulation of atmospheric models (vertical coordinates, hydrostatic approximation); parameterization of physical processes (e.g. clouds, convection, boundary layer, radiation); atmospheric data assimilation and weather prediction; predictability (chaos-theory, ensemble methods); climate models (coupled atmospheric, oceanic and biogeochemical models); climate prediction. Hands-on experience with simple models will be acquired in the tutorials. | |||||
Lecture notes | Slides and lecture notes will be made available at Link | |||||
Literature | List of literature will be provided. | |||||
Prerequisites / Notice | Prerequisites: to follow this course, you need some basic background in atmospheric science, numerical methods (e.g., "Numerische Methoden in der Umweltphysik", 701-0461-00L) as well as experience in programming. Previous experience with PYTHON is useful but not required. | |||||
701-1224-00L | Mesoscale Atmospheric Systems - Observation and Modelling | W | 2 credits | 2V | H. Wernli, U. Germann | |
Abstract | Mesoscale meteorology focusing on processes relevant for the evolution of precipitation systems. Discussion of empirical and mathematical-physical models for, e.g., fronts and convective storms. Consideration of oceanic evaporation, transport and the associated physics of stable water isotopes. Introduction to weather radar being the widespread instrument for observing mesoscale precipitation. | |||||
Learning objective | Basic concepts of observational and theoretical mesoscale meteorology, including precipitation measurements and radar. Knowledge about the interpretation of radar images. Understanding of processes leading to the formation of fronts and convective storms, and basic knowledge on ocean evaporation and the physics of stable water isotopes. | |||||
701-1280-00L | Self-learning Course on Advanced Topics in Atmospheric and Climate Science Please contact one of the professors listed under prerequisites/notice if you plan to take this course. Students are allowed to enroll in both courses 701-1280-00L & 701-1281-00L Self-learning Course on Advanced Topics in Atmospheric and Climate Science but have to choose different supervisors. | W | 3 credits | 6A | Supervisors | |
Abstract | This course offers an individual pathway to deepen knowledge and understanding of a specific advanced topic in atmospheric and climate science in one of these fields: - atmospheric chemistry - atmospheric circulation and predictability - atmospheric dynamics - atmospheric physics - climate modeling - climate physics - land-climate dynamics | |||||
Learning objective | The learning goals of this course are threefold: 1) obtain novel insight into an advanced scientific topic, 2) train the self-study competences in particular related to reading of advanced textbooks and writing a concise summary, and 3) gain experience in the scientific interaction with experts. The format of the course is complementary to other types of teaching (lectures and seminars) and addresses skills that are essential for a wide range of professional activities (including a PhD). | |||||
Content | The course has the following elements: Week 1: Selection of specific topic and decision about reading material (textbook chapters and maybe 1-2 review papers) Week 2: General discussion about self-study skills (how to read scientific literature and write summaries; specifics of scientific writing; how to prepare efficient meetings). For the scientific writing, students are encouraged to participate in an online training course offered by Stanford University: https://lagunita.stanford.edu/courses/Medicine/SciWrite-SP/SelfPaced/about Weeks 6 and 9: Meetings with supervisor to clarify scientific questions Week 12: Hand-in of written summary (4 pages maximum) Week 14: Supervisor provides written feedback to the summary document Week 16: Oral exam about the scientific topic | |||||
Literature | Literature (including book chapters, scientific publications) will be provided by the responsible supervisor in coordination with the student. | |||||
Prerequisites / Notice | Prerequisites depend on the chosen field and include successful completion of the listed lecture courses: • atmospheric dynamics: “Dynamics of large-scale atmospheric flow” (701-1221-00L) • atmospheric chemistry: “Stratospheric Chemistry” (701-1233-00L) or “Tropospheric Chemistry” (701-1234-00L) or “Aerosols I” (402-0572-00L). • atmospheric physics: “Atmospheric Physics” (701-0475-00L) • climate physics: “Klimasysteme” (701-0412-00L) or equivalent • land-climate dynamics: “Land-climate dynamics” (701-1251-00L) • climate modeling: “Numerical modeling of weather and climate” (701-1216-00L) (parallel attendance possible) • atmospheric circulation and predictability: “Dynamics of large-scale atmospheric flow” (701-1221-00L) If you plan to take this course, please contact one of the professors according to your interest. • atmospheric chemistry (Prof. T. Peter) • atmospheric circulation and predictability (Prof. D. Domeisen) • atmospheric dynamics (Prof. H. Wernli) • atmospheric physics (Prof. U. Lohmann) • climate modeling (Prof. C. Schär) • climate physics (Prof. R. Knutti) • land-climate dynamics (Prof. S. Seneviratne) | |||||
102-0448-00L | Groundwater II | W | 6 credits | 4G | M. Willmann, J. Jimenez-Martinez | |
Abstract | The course is based on the course 'Groundwater I' and is a prerequisite for a deeper understanding of groundwater flow and contaminant transport problems with a strong emphasis on numerical modeling. | |||||
Learning objective | The course should enable students to understand advanced concepts of groundwater flow and transport and to apply groundwater flow and transport modelling. the student should be able to a) formulate practical flow and contaminant transport problems. b) solve steady-state and transient flow and transport problems in 2 and 3 spatial dimensions using numerical codes based on the finite difference method and the finite element methods. c) solve simple inverse flow problems for parameter estimation given measurements. d) assess simple multiphase flow problems. e) assess spatial variability of parameters and use of stochastic techniques in this task. f) assess simple coupled reactive transport problems. | |||||
Content | Introduction and basic flow and contaminant transport equation. Numerical solution of the 3D flow equation using the finite difference method. Numerical solution to the flow equation using the finite element equation Numerical solution to the transport equation using the finite difference method. Alternative methods for transport modeling like method of characteristics and the random walk method. Two-phase flow and Unsaturated flow problems. Spatial variability of parameters and its geostatistical representation -geostatistics and stochastic modelling. Reactive transport modelling. | |||||
Lecture notes | Handouts | |||||
Literature | - Anderson, M. and W. Woessner, Applied Groundwater Modeling, Elsevier Science & Technology Books, 448 p., 2002 - J. Bear and A. Cheng, Modeling Groundwater Flow and Contaminant Transport, Springer, 2010 - Appelo, C.A.J. and D. Postma, Geochemistry, Groundwater and Pollution, Second Edition, Taylor & Francis, 2005 - Rubin, Y., Applied Stochastic Hydrology, Oxford University Press, 2003 - Chiang und Kinzelbach, 3-D Groundwater Modeling with PMWIN. Springer, 2001. | |||||
Prerequisites / Notice | Each afternoon will be divided into 2 h of lectures and 2h of exercises. Two thirds of the exercises of the course are organized as a computer workshop to get hands-on experience with groundwater modelling. | |||||
102-0468-00L | Watershed Modelling | W | 3 credits | 2G | P. Molnar | |
Abstract | Introduction to watershed modelling with applications of GIS in hydrology, the use of semi- and fully-distributed continuous watershed models, and their calibration and validation. The course contains substantive practical modelling experience in several assignments. | |||||
Learning objective | Watershed Modelling is a course in the Master of Science in Environmental Engineering Programme. It is a practical course in which the students learn to (a) use GIS in hydrological applications, (b) calibrate and validate models, (c) apply and interpret semi- and fully- distributed continuous watershed models, and (d) discuss several modelling case studies. This course is a follow up of Hydrology 2 and requires solid computer skills. | |||||
Content | - Introduction to watershed modelling - GIS in watershed modelling (ArcGIS exercise) - Calibration and validation of models - Semi-distributed modelling with PRMS (model description, application) - Distributed watershed modelling with TOPKAPI (model description, application) - Modelling applications and case studies (climate change scenarios, land use change, basin erosion) | |||||
Literature | - Lecture presentations - Exercise documentation - Relevant scientific papers all posted on the course website | |||||
102-0488-00L | Water Resources Management | W | 3 credits | 2G | P. Burlando | |
Abstract | Modern engineering approach to problems of sustainable water resources, planning and management of water allocation requires the understanding of modelling techniques that allow to account for comprehensive water uses (thereby including ecological needs) and stakeholders needs, long-term analysis and optimization. The course presents the most relevant approaches to address these problems. | |||||
Learning objective | The course provides the essential knowledge and tools of water resources planning and management. Core of the course are the concepts of data analysis, simulation, optimization and reliability assessment in relation to water projects and sustainable water resources management. | |||||
Content | The course is organized in four parts. Part 1 is a general introduction to the purposes and aims of sustainable water resources management, problem understanding and tools identification. Part 2 recalls Time Series Analysis and Linear Stochastic Models. An introduction to Nonlinear Time Series Analysis and related techniques will then be made in order to broaden the vision of how determinism and stochasticity might sign hydrological and geophysical variables. Part 3 deals with the optimal allocation of water resources and introduces to several tools traditionally used in WRM, such as linear and dynamic programming. Special attention will be devoted to optimization (deterministic and stochastic) and compared to simulation techniques as design methods for allocation of water resources in complex and competitive systems, with focus on sustainability and stakeholders needs. Part 4 will introduce to basic indexes used in economical and reliability analyses, and will focus on multicriteria analysis methods as a tool to assess the reliability of water systems in relation to design alternatives. | |||||
Lecture notes | A copy of the lecture handouts will be available on the webpage of the course. Complementary documentation in the form of scientific and technical articles, as well as excerpts from books will be also made available. | |||||
Literature | A number of book chapters and paper articles will be listed and suggested to read. They will also be part of discussion during the oral examination. | |||||
Prerequisites / Notice | Suggested relevant courses: Hydrologie I (or a similar content course) and Wasserhaushalt (Teil "Wasserwirtschaft", 4. Sem. UmweltIng., or a similar content course) for those students not belonging to Environmental Engineering. | |||||
860-0012-00L | Cooperation and Conflict Over International Water Resources Number of participants limited to 40. STP students have priority. This is a research seminar at the Master level. PhD students are also welcome. | W | 3 credits | 2S + 2A | B. Wehrli, R. Athavale, T. Bernauer | |
Abstract | This seminar focuses on the technical, economic, and political challenges of dealing with water allocation and pollution problems in large international river systems. It examines ways and means through which such challenges are addressed, and when and why international efforts in this respect succeed or fail. | |||||
Learning objective | Ability to (1) understand the causes and consequences of water scarcity and water pollution problems in large international river systems; (2) understand ways and means of addressing such water challenges; and (3) analyse when and why international efforts in this respect succeed or fail. | |||||
Content | Based on lectures and discussion of scientific papers and reports, students acquire basic knowledge on contentious issues in managing international water resources, on the determinants of cooperation and conflict over international water issues, and on ways and means of mitigating conflict and promoting cooperation. Students will then, in small teams coached by the instructors, carry out research on a case of their choice (i.e. an international river basin where riparian countries are trying to find solutions to water allocation and/or water quality problems associated with a large dam project). They will write a brief paper and present their findings towards the end of the semester. | |||||
Lecture notes | Slides and reading materials will be distributed electronically. | |||||
Literature | The UN World Water Development Reports provide a broad overview of the topic: http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/ | |||||
Prerequisites / Notice | The course is open to Master and PhD students from any area of ETH. ISTP students who take this course should also register for the course 860-0012-01L - Cooperation and conflict over international water resources; In-depth case study. | |||||
Climate Processes and Feedbacks | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
701-1226-00L | Inter-Annual Phenomena and Their Prediction | W | 2 credits | 2G | C. Appenzeller | |
Abstract | This course provides an overview of the current ability to understand and predict intra-seasonal and inter-annual climate variability in the tropical and extra-tropical region and provides insights on how operational weather and climate services are organized. | |||||
Learning objective | Students will acquire an understanding of the key atmosphere and ocean processes involved, will gain experience in analyzing and predicting sub-seasonal to inter-annual variability and learn how operational weather and climate services are organised and how scientific developments can improve these services. | |||||
Content | The course covers the following topics: Part 1: - Introduction, some basic concepts and examples of sub-seasonal and inter-annual variability - Weather and climate data and the statistical concepts used for analysing inter-annual variability (e.g. correlation analysis, teleconnection maps, EOF analysis) Part 2: - Inter-annual variability in the tropical region (e.g. ENSO, MJO) - Inter-annual variability in the extra-tropical region (e.g. Blocking, NAO, PNA, regimes) Part 3: - Prediction of inter-annual variability (statistical methods, ensemble prediction systems, monthly and seasonal forecasts, seamless forecasts) - Verification and interpretation of probabilistic forecast systems - Climate change and inter-annual variability Part 4: - Challenges for operational weather and climate services - Role of weather and climate extremes - Early warning systems - A visit to the forecasting centre of MeteoSwiss | |||||
Lecture notes | A pdf version of the slides will be available at http://www.iac.ethz.ch/edu/courses/master/modules/interannual-phenomena.html | |||||
Literature | References are given during the lecture. | |||||
701-1228-00L | Cloud Dynamics: Hurricanes | W | 4 credits | 3G | U. Lohmann | |
Abstract | Hurricanes are among the most destructive elements in the atmosphere. This lecture will discuss the physical requirements for their formation, life cycle, damage potential and their relationship to global warming. It also distinguishes hurricanes from thunderstorms and tornadoes. | |||||
Learning objective | At the end of this course students will be able to distinguish the formation and life cycle mechanisms of tropical cyclones from those of extratropical thunderstorms/cyclones, project how tropical cyclones change in a warmer climate based on their physics and evaluate different tropical cyclone modification ideas. | |||||
Lecture notes | Slides will be made available | |||||
Literature | A literature list can be found here: http://www.iac.ethz.ch/edu/courses/master/modules/cloud_dynamics | |||||
Prerequisites / Notice | At least one introductory lecture in Atmospheric Science or Instructor's consent. | |||||
701-1280-00L | Self-learning Course on Advanced Topics in Atmospheric and Climate Science Please contact one of the professors listed under prerequisites/notice if you plan to take this course. Students are allowed to enroll in both courses 701-1280-00L & 701-1281-00L Self-learning Course on Advanced Topics in Atmospheric and Climate Science but have to choose different supervisors. | W | 3 credits | 6A | Supervisors | |
Abstract | This course offers an individual pathway to deepen knowledge and understanding of a specific advanced topic in atmospheric and climate science in one of these fields: - atmospheric chemistry - atmospheric circulation and predictability - atmospheric dynamics - atmospheric physics - climate modeling - climate physics - land-climate dynamics | |||||
Learning objective | The learning goals of this course are threefold: 1) obtain novel insight into an advanced scientific topic, 2) train the self-study competences in particular related to reading of advanced textbooks and writing a concise summary, and 3) gain experience in the scientific interaction with experts. The format of the course is complementary to other types of teaching (lectures and seminars) and addresses skills that are essential for a wide range of professional activities (including a PhD). | |||||
Content | The course has the following elements: Week 1: Selection of specific topic and decision about reading material (textbook chapters and maybe 1-2 review papers) Week 2: General discussion about self-study skills (how to read scientific literature and write summaries; specifics of scientific writing; how to prepare efficient meetings). For the scientific writing, students are encouraged to participate in an online training course offered by Stanford University: https://lagunita.stanford.edu/courses/Medicine/SciWrite-SP/SelfPaced/about Weeks 6 and 9: Meetings with supervisor to clarify scientific questions Week 12: Hand-in of written summary (4 pages maximum) Week 14: Supervisor provides written feedback to the summary document Week 16: Oral exam about the scientific topic | |||||
Literature | Literature (including book chapters, scientific publications) will be provided by the responsible supervisor in coordination with the student. | |||||
Prerequisites / Notice | Prerequisites depend on the chosen field and include successful completion of the listed lecture courses: • atmospheric dynamics: “Dynamics of large-scale atmospheric flow” (701-1221-00L) • atmospheric chemistry: “Stratospheric Chemistry” (701-1233-00L) or “Tropospheric Chemistry” (701-1234-00L) or “Aerosols I” (402-0572-00L). • atmospheric physics: “Atmospheric Physics” (701-0475-00L) • climate physics: “Klimasysteme” (701-0412-00L) or equivalent • land-climate dynamics: “Land-climate dynamics” (701-1251-00L) • climate modeling: “Numerical modeling of weather and climate” (701-1216-00L) (parallel attendance possible) • atmospheric circulation and predictability: “Dynamics of large-scale atmospheric flow” (701-1221-00L) If you plan to take this course, please contact one of the professors according to your interest. • atmospheric chemistry (Prof. T. Peter) • atmospheric circulation and predictability (Prof. D. Domeisen) • atmospheric dynamics (Prof. H. Wernli) • atmospheric physics (Prof. U. Lohmann) • climate modeling (Prof. C. Schär) • climate physics (Prof. R. Knutti) • land-climate dynamics (Prof. S. Seneviratne) |
- Page 1 of 1