Suchergebnis: Katalogdaten im Herbstsemester 2018

Energy Science and Technology Master Information
Wahlfächer
- Wählbare Kernfächer des Studienreglements 2007
- Wahlfächer des Studienreglements 2018

Diese Kurse sind besonders empfohlen, andere ETH-Kurse aus dem Feld Energy Science and Technology im weiteren Sinne können in Absprache mit dem Tutor gewählt werden.
Electrical Power Engineering
NummerTitelTypECTSUmfangDozierende
227-0113-00LLeistungselektronik Information W6 KP4GJ. W. Kolar
KurzbeschreibungVerständnis der Grundfunktion leistungselektronischer Energieumformer, Einsatzbereiche. Methoden der Analyse des Betriebsverhaltens und des regelungstechnischen Verhaltens, Dimensionierung. Beurteilung der Beeinflussung umgebender Systeme, Elektromagnetische Verträglichkeit.
LernzielVerständnis der Grundfunktion leistungselektronischer Energieumformer, Einsatzbereiche. Methoden der Analyse des Betriebsverhaltens und des regelungstechnischen Verhaltens, Dimensionierung. Beurteilung der Beeinflussung umgebender Systeme, Elektromagnetische Verträglichkeit.
InhaltGrundstruktur leistungselektronischer Systeme, Beispiele. DC/DC-Konverter, Potentialtrennung. Regelungstechnische Modellierung von DC/DC-Konvertern, State-Space-Averaging, PWM-Switch-Model. Leistungshalbleiter, Nichtidealitäten, Kühlung. Magnetische Bauelemente, Skin- und Proximity- Effekt, Dimensionierung. EMV. Einphasen- Diodenbrücke mit kapazitiver Glättung, Netzrückwirkungen, Leistungsfaktorkorrektur. Selbstgeführte Einphasen- u. Dreiphasen-Brückenschaltung mit eingeprägter Ausgangsspannung, Modulation, Raumzeigerbegriff. Netzgeführte Einphasen-Brückenschaltung, Kommutierung, Wechselrichterbetrieb, WR-Kippen. Netzgeführte Dreiphasen-Brückenschaltung, ungesteuert und gesteuert/kapazitive und induktive Glättung. Parallelschaltung netzgeführter Stromrichter, Saugdrosselschaltung. Gegenparallelschaltung netzgeführter Dreiphasen-Brückenschaltungen, Vierquadranten-Gleichstrommaschinenantrieb. Resonanz-Thyristorstromrichter, u-Zi-Diagramm.
SkriptSkript und Simulationsprogramm für interaktives Lernen und Visualisierung, Uebungen mit Musterlösungen
Voraussetzungen / BesonderesVoraussetzungen: Grundkenntnisse der Elektrotechnik und Signaltheorie.
227-0117-00LHochspannungstechnik II: Isolationstechnik
Die Vorlesungen Hochspannungstechnik I: Mess- und Versuchstechnik (227-0117-10L) und Hochspannungstechnik II: Isolationstechnik (227-0117-00L) können unabhängig voneinander besucht werden.
W6 KP4GC. Franck, U. Straumann
KurzbeschreibungVerstehen der grundlegenden Phänomene und Prinzipien, welche im Zusammenhang mit sehr hohen elektrischen Feldstärken auftreten. Diese Kenntnisse werden auf Dimensionierungen von Betriebsmitteln elektrischer Energieübertragungssysteme angewendet. Heute übliche Methoden der Computermodellierung werden vorgestellt und im Rahmen einer Übung verwendet.
LernzielDie Studierenden haben Kenntnis der grundlegenden Phänomene und Prinzipien, welche im Zusammenhang mit sehr hohen elektrischen Feldstärken auftreten. Sie verstehen die unterschiedlichen Mechanismen, die zum Versagen von Isolationssystemen führen und können Versagens-Kriterien zur Beurteilung von Hochspannungskomponenten anwenden. Sie sind in der Lage, Schwachstellen von Isolationssystemen zu identifizieren und Möglichkeiten zu deren Behebung zu nennen. Zudem kennen sie die gängigen Isolationssysteme und deren Dimensionierung in der Praxis.
Inhalt- Diskussion der für die Hochspannungstechnik relevanten Feldgleichungen
- analytische und numerische Lösung dieser Feldgleichungen, sowie Herleitung der wichtigen Ersatzschaltbilder zur Beschreibung von Feldern und Verlusten in Isolationen
- Einführung in die Gasphysik
- Mechanismus des Durchschlags in gasförmigen, flüssigen und festen Isolierungen, sowie in Isolationssystemen
- Methoden zur rechnerischen Bestimmung der elektrischen Festigkeit von gasförmigen, flüssigen und festen Isolierungen
- Anwendung der Erkenntnisse an Hochspannungskomponenten
- Exkursion zu Herstellern von Hochspannungskomponenten
SkriptVorlesungsunterlagen
LiteraturA. Küchler, Hochspannungstechnik, Springer Berlin, 4. Auflage, 2017 (ISBN: 978-3-662-54699-4)
227-0247-00LPower Electronic Systems I Information W6 KP4GJ. W. Kolar
KurzbeschreibungBasics of the switching behavior, gate drive and snubber circuits of power semiconductors are discussed. Soft-switching and resonant DC/DC converters are analyzed in detail and high frequency loss mechanisms of magnetic components are explained. Space vector modulation of three-phase inverters is introduced and the main power components are designed for typical industry applications.
LernzielDetailed understanding of the principle of operation and modulation of advanced power electronics converter systems, especially of zero voltage switching and zero current switching non-isolated and isolated DC/DC converter systems and three-phase voltage DC link inverter systems. Furthermore, the course should convey knowledge on the switching frequency related losses of power semiconductors and inductive power components and introduce the concept of space vector calculus which provides a basis for the comprehensive discussion of three-phase PWM converters systems in the lecture Power Electronic Systems II.
InhaltBasics of the switching behavior and gate drive circuits of power semiconductor devices and auxiliary circuits for minimizing the switching losses are explained. Furthermore, zero voltage switching, zero current switching, and resonant DC/DC converters are discussed in detail; the operating behavior of isolated full-bridge DC/DC converters is detailed for different secondary side rectifier topologies; high frequency loss mechanisms of magnetic components of converter circuits are explained and approximate calculation methods are presented; the concept of space vector calculus for analyzing three-phase systems is introduced; finally, phase-oriented and space vector modulation of three-phase inverter systems are discussed related to voltage DC link inverter systems and the design of the main power components based on analytical calculations is explained.
SkriptLecture notes and associated exercises including correct answers, simulation program for interactive self-learning including visualization/animation features.
Voraussetzungen / BesonderesPrerequisites: Introductory course on power electronics.
227-0523-00LEisenbahn-Systemtechnik IW6 KP4GM. Meyer
KurzbeschreibungGrundlagen der Eisenbahnfahrzeuge und ihr Zusammenspiel mit der Bahninfrastruktur:
- Zugförderungsaufgaben und Fahrzeugarten
- Fahrdynamik
- Mechanischer Aufbau der Eisenbahnfahrzeuge
- Bremssysteme
- Antriebsstrang und Hilfsbetriebeversorgung
- Bahnstromversorgung
- Sicherungsanlagen
- Betriebsleitung und Unterhalt
Lernziel- Überblick über die technischen Eigenschaften von Eisenbahnsystemen
- Kenntnisse über den Aufbau der Eisenbahnfahrzeuge
- Verständnis für die Abhängigkeiten verschiedenster Ingenieur-Disziplinen in einem vielfältigen System (Mechanik, Elektro- und Informationstechnik, Verkehrstechnik)
- Verständnis für die Aufgaben und Möglichkeiten eines Ingenieurs in einem stark von wirtschaftlichen und politischen Randbedingungen geprägten Umfeld
- Einblick in die Aktivitäten der Schienenfahrzeug-Industrie und der Bahnen in der Schweiz
- Begeisterung des Ingenieurnachwuchses für die berufliche Tätigkeit im Bereich Schienenverker und Schienenfahrzeuge
InhaltEST I (Herbstsemester) - Begriffen, Grundlagen, Merkmale

1 Einführung:
1.1 Geschichte und Struktur des Bahnsystems
1.2 Fahrdynamik

2 Vollbahnfahrzeuge:
2.3 Mechanik: Kasten, Drehgestelle, Lauftechnik, Adhäsion
2.2 Bremsen
2.3 Traktionsantriebssysteme
2.4 Hilfsbetriebe und Komfortanlagen
2.5 Steuerung und Regelung

3 Infrastruktur:
3.1 Fahrweg
3.2 Bahnstromversorgung
3.3 Sicherungsanlagen

4 Betrieb:
4.1 Interoperabilität, Normen und Zulassung
4.2 RAMS, LCC
4.3 Anwendungsbeispiele

Voraussichtlich ein oder zwei Gastreferate

Geplante Exkursionen:
Betriebszentrale SBB, Zürich Flughafen
Reparatur und Unterhalt, SBB Zürich Altstetten
Fahrzeugfertigung, Stadler Bussnang
SkriptAbgabe der Unterlagen (gegen eine Schutzgebühr) zu Beginn des Semesters. Rechtzeitig eingschriebene Teilnehmer können die Unterlagen auf Wunsch und gegen eine Zusatzgebühr auch in Farbe beziehen.
Voraussetzungen / BesonderesDozent:
Dr. Markus Meyer, Emkamatik GmbH

Voraussichtlich ein oder zwei Gastvorträge von anderen Referenten.

EST I (Herbstsemester) kann als in sich geschlossene einsemestrige Vorlesung besucht werden. EST II (Frühjahrssemester) dient der weiteren Vertiefung der Fahrzeugtechnik und der Integration in die Bahninfrastruktur.
227-0526-00LPower System AnalysisW6 KP4GG. Hug
KurzbeschreibungZiel dieser Vorlesung ist das Verständnis der stationären und dynamischen, bei der elektrischen Energieübertragung auftretenden Vorgänge. Die Herleitung der stationären Modelle der Komponenten des elektrischen Netzes, die Aufstellung der mathematischen Gleichungssysteme, deren spezielle Charakteristiken und Lösungsmethoden stehen im Vordergrund.
LernzielZiel dieser Vorlesung ist das Verständnis der stationären und dynamischen, bei der elektrischen Energieübertragung auftretenden Vorgänge und die Anwendung von Analysemethoden in stationären und dynamischen Zuständen des elektrischen Netzes.
InhaltDer Kurs beinhaltet die Herleitung von stationären und dynamischen Modellen des elektrischen Netzwerks, deren mathematische Darstellungen und spezielle Charakteristiken sowie Lösungsmethoden für die Behandlung von grossen linearen und nichtlinearen Gleichungssystemen im Zusammenhang mit dem elektrischen Netz. Ansätze wie der Netwon-Raphson Algorithmus angewendet auf die Lastflussgleichungen, Superpositions Prinzip für Kurzschlussberechnung, Methoden für Stabilitätsanalysen und Lastflussberechnungsmethoden für das Verteilnetz werden präsentiert.
SkriptVorlesungsskript.
227-0731-00LPower Market I - Portfolio and Risk ManagementW6 KP4GD. Reichelt, G. A. Koeppel
KurzbeschreibungPortfolio und Risiko Management für Energieversorgungsunternehmen, Europäischer Strommarkt und -handel, Terminkontrakte, Preisabsicherung, Optionen und Derivate, Kennzahlen für das Risikomanagement, finanztechnische Modellierung von Kraftwerken, grenzüberschreitender Stromhandel, Systemdienstleistungen, Regelenergiemarkt, Bilanzgruppenmodell
LernzielErwerb von umfassenden Kenntnissen über die weltweite Liberalisierung der Strommärkte, den internationalen Stromhandel sowie die Funktion von Strombörsen. Verstehen der Finanzprodukte (Derivate) basierend auf dem Strompreis. Abbilden des Portfolios aus physischer Produktion, Verträgen und Finanzprodukten. Beurteilen von Strategien zur Absicherung des Marktpreisrisikos. Beherrschen der Methoden und Werkzeuge des Risiko Managements.
Inhalt1. Europäischer Strommarkt und –handel
1.1. Einführung Stromhandel
1.2. Entwicklung des Marktes
1.3. Energiewirtschaft
1.4. Spothandel und OTC-Handel
1.5. Strombörse EEX

2. Marktmodell
2.1. Marktplatz und Organisation
2.2. Bilanzgruppenmodell / Ausgleichsenergie
2.3. Systemdienstleistungen
2.4. Regelenergiemarkt
2.5. Grenzüberschreitender Handel
2.6. Kapazitätsauktionen

3. Portfolio und Risiko Management
3.1. Portfoliomanagement 1 (Einführung)
3.2. Terminkontrakte (EEX Futures)
3.3. Risk Management 1 (m2m, VaR, hpfc, Volatilität, cVaR)
3.4. Risk Management 2 (PaR)
3.5. Vertragsbewertung (HPFC)
3.6. Portfoliomanagement 2
3.7. Risk Management 3 (Energiegeschäft)

4. Energie & Finance I
4.1. Optionen 1 – Grundlagen
4.2. Optionen 2 – Absicherungsstrategien
4.3. Einführung Derivate (Swaps, Cap, Floor, Collar)
4.4. Finanztechnische Modellierung von Kraftwerken
4.5. Wasserkraft und Handel
4.6. Anreizregulierung
SkriptHandouts mit den Folien der Vorlesung
Voraussetzungen / Besonderes1 Exkursion pro Semester, 2 Case Studies, externe Referaten für ausgewählte Themen.
Kurs Moodle: Link
Energy Flows and Processes
NummerTitelTypECTSUmfangDozierende
151-0123-00LExperimental Methods for EngineersW4 KP2V + 2UT. Rösgen, K. Boulouchos, A.‑K. U. Michel, H.‑M. Prasser
KurzbeschreibungThe course presents an overview of measurement tasks in engineering environments. Different concepts for the acquisition and processing of typical measurement quantities are introduced. Following an initial in-class introduction, laboratory exercises from different application areas (especially in thermofluidics and process engineering) are attended by students in small groups.
LernzielIntroduction to various aspects of measurement techniques, with particular emphasis on thermo-fluidic applications.
Understanding of various sensing technologies and analysis procedures.
Exposure to typical experiments, diagnostics hardware, data acquisition and processing.
Study of applications in the laboratory.
Fundamentals of scientific documentation & reporting.
InhaltIn-class introduction to representative measurement techniques in the
research areas of the participating institutes (fluid dynamics, energy technology, process engineering)
Student participation in 8-10 laboratory experiments (study groups of 3-5 students, dependent on the number of course participants and available experiments)
Lab reports for all attended experiments have to be submitted by the study groups.
A final exam evaluates the acquired knowledge individually.
SkriptPresentations, handouts and instructions are provided for each experiment.
LiteraturHolman, J.P. "Experimental Methods for Engineers", McGraw-Hill 2001, ISBN 0-07-366055-8
Morris, A.S. & Langari, R. "Measurement and Instrumentation", Elsevier 2011, ISBN 0-12-381960-4
Eckelmann, H. "Einführung in die Strömungsmesstechnik", Teubner 1997, ISBN 3-519-02379-2
Voraussetzungen / BesonderesBasic understanding in the following areas:
- fluid mechanics, thermodynamics, heat and mass transfer
- electrical engineering / electronics
- numerical data analysis and processing (e.g. using MATLAB)
151-0163-00LNuclear Energy ConversionW4 KP2V + 1UH.‑M. Prasser
KurzbeschreibungPhysikalische Grundlagen der Kernspaltung und der Kettenreaktion, thermische Auslegung, Aufbau, Funktion, und Betrieb von Kernreaktoren und Kernkraftwerken, Leichtwasserreaktoren und andere Reaktortypen, Konversion und Brüten
LernzielDie Studierenden erhalten einen Überblick über die Energieerzeugung in Kernkraftwerken, über Aufbau und Funktion der wichtigsten Reaktortypen sowie über den Kernbrennstoffkreislauf mit Schwerpunkt auf Leichtwasserreaktoren. Sie erhalten die mathematisch-physikalischen Grundlagen für quantitave Abschätzungen zu den wichtigsten Aspekten der Auslegung, des dynamischen Verhaltens und der Stoff- und Energieströme.
InhaltNeutronenphysikalische Grundlagen von Kernspaltung und Kettenreaktion. Thermodynamische Grundlagen von Kernreaktoren. Auslegung des Reaktorkerns. Einführung in das dynamische Verhalten von Kernreaktoren. Überblick über die wichtigsten Reaktortypen, Unterschied zwischen thermischen Reaktoren und Brutreaktoren. Aufbau und Betrieb von Kernkraftwerken mit Druck- und Siedewasserreaktoren, Rolle und Funktion der wichtigsten Sicherheitssysteme, Besonderheiten des Energieumwandlungsprozesses. Entwicklungstendenzen in der Reaktortechnik.
SkriptVorlesungsunterlagen werden verteilt. Vielfältiges Angebot an zusätzlicher Literatur und Informationen unter Link
LiteraturS. Glasston & A. Sesonke: Nuclear Reactor Engineering, Reactor System Engineering, Ed. 4, Vol. 2., Springer-Science+Business Media, B.V.

R. L. Murray: Nuclear Energy (Sixth Edition), An Introduction to the Concepts, Systems, and Applications of Nuclear Processes, Elsevier
151-0185-00LRadiation Heat Transfer Information W4 KP2V + 1UA. Steinfeld, P. Pozivil
KurzbeschreibungAdvanced course in radiation heat transfer
LernzielFundamentals of radiative heat transfer and its applications. Examples are combustion and solar thermal/thermochemical processes, and other applications in the field of energy conversion and material processing.
Inhalt1. Introduction to thermal radiation. Definitions. Spectral and directional properties. Electromagnetic spectrum. Blackbody and gray surfaces. Absorptivity, emissivity, reflectivity. Planck's Law, Wien's Displacement Law, Kirchhoff's Law.

2. Surface radiation exchange. Diffuse and specular surfaces. Gray and selective surfaces. Configuration factors. Radiation exchange. Enclosure theory, radiosity method. Monte Carlo.

3.Absorbing, emitting and scattering media. Extinction, absorption, and scattering coefficients. Scattering phase function. Optical thickness. Equation of radiative transfer. Solution methods: discrete ordinate, zone, Monte-Carlo.

4. Applications. Cavities. Selective surfaces and media. Semi-transparent windows. Combined radiation-conduction-convection heat transfer.
SkriptCopy of the slides presented.
LiteraturR. Siegel, J.R. Howell, Thermal Radiation Heat Transfer, 3rd. ed., Taylor & Francis, New York, 2002.

M. Modest, Radiative Heat Transfer, Academic Press, San Diego, 2003.
151-0207-00LTheory and Modeling of Reactive FlowsW4 KP3GC. E. Frouzakis, I. Mantzaras
KurzbeschreibungThe course first reviews the governing equations and combustion chemistry, setting the ground for the analysis of homogeneous gas-phase mixtures, laminar diffusion and premixed flames. Catalytic combustion and its coupling with homogeneous combustion are dealt in detail, and turbulent combustion modeling approaches are presented. Available numerical codes will be used for modeling.
LernzielTheory of combustion with numerical applications
InhaltThe analysis of realistic reactive flow systems necessitates the use of detailed computer models that can be constructed starting from first principles i.e. thermodynamics, fluid mechanics, chemical kinetics, and heat
and mass transport. In this course, the focus will be on combustion theory and modeling. The reacting flow governing equations and the combustion chemistry are firstly reviewed, setting the ground for the analysis of
homogeneous gas-phase mixtures, laminar diffusion and premixed flames. Heterogeneous (catalytic) combustion, an area of increased importance in the last years, will be dealt in detail along with its coupling with homogeneous
combustion. Finally, approaches for the modeling of turbulent combustion will be presented. Available numerical codes will be used to compute the above described phenomena. Familiarity with numerical methods for the solution of partial differential equations is expected.
SkriptHandouts
Voraussetzungen / BesonderesNEW course
151-0209-00LRenewable Energy Technologies I
Findet dieses Semester nicht statt.
Die Lerneinheiten Renewable Energy Technologies I (151-0209-00L, im HS) und Renewable Energy Technologies II (529-0191-01L, im FS) können unabhängig voneinander besucht werden.
W4 KP3GA. Steinfeld
KurzbeschreibungScenarios for world energy demand and CO2 emissions, implications for climate. Methods for the assessment of energy chains. Potential and technology of renewable energies: Biomass (heat, electricity, biofuels), solar energy (low temp. heat, solar thermal and photovoltaic electricity, solar chemistry). Wind and ocean energy, heat pumps, geothermal energy, energy from waste. CO2 sequestration.
LernzielScenarios for the development of world primary energy consumption are introduced. Students know the potential and limitations of renewable energies for reducing CO2 emissions, and their contribution towards a future sustainable energy system that respects climate protection goals.
InhaltScenarios for the development of world energy consumption, energy intensity and economic development. Energy conversion chains, primary energy sources and availability of raw materials. Methods for the assessment of energy systems, ecological balances and life cycle analysis of complete energy chains. Biomass: carbon reservoirs and the carbon cycle, energetic utilisation of biomass, agricultural production of energy carriers, biofuels. Solar energy: solar collectors, solar-thermal power stations, solar chemistry, photovoltaics, photochemistry. Wind energy, wind power stations. Ocean energy (tides, waves). Geothermal energy: heat pumps, hot steam and hot water resources, hot dry rock (HDR) technique. Energy recovery from waste. Greenhouse gas mitigation, CO2 sequestration, chemical bonding of CO2. Consequences of human energy use for ecological systems, atmosphere and climate.
SkriptLecture notes will be distributed electronically during the course.
Literatur- Kaltschmitt, M., Wiese, A., Streicher, W.: Erneuerbare Energien (Springer, 2003)

- Tester, J.W., Drake, E.M., Golay, M.W., Driscoll, M.J., Peters, W.A.: Sustainable Energy - Choosing Among Options (MIT Press, 2005)

- G. Boyle, Renewable Energy: Power for a sustainable futureOxford University Press, 3rd ed., 2012, ISBN: 978-0-19-954533-9

-V. Quaschning, Renewable Energy and Climate ChangeWiley- IEEE, 2010, ISBN: 978-0-470-74707-0, 9781119994381 (online)
Voraussetzungen / BesonderesFundamentals of chemistry, physics and thermodynamics are a prerequisite for this course.

Topics are available to carry out a Project Work (Semesterarbeit) on the contents of this course.
151-0216-00LWind EnergyW4 KP2V + 1UN. Chokani
KurzbeschreibungThe objective of this course is to introduce the students to the fundamentals, technologies, modern day application, and economics of wind energy. These subjects are introduced through a discussion of the basic principles of wind energy generation and conversion, and a detailed description of the broad range of relevant technical, economic and environmental topics.
LernzielThe objective of this course is to introduce the students to the fundamentals, technologies, modern day application, and economics of wind energy.
InhaltThis mechanical engineering course focuses on the technical aspects of wind turbines; non-technical issues are not within the scope of this technically oriented course. On completion of this course, the student shall be able to conduct the preliminary aerodynamic and structural design of the wind turbine blades. The student shall also be more aware of the broad context of drivetrains, dynamics and control, electrical systems, and meteorology, relevant to all types of wind turbines.
151-0251-00LIC-Engines: Principles, Thermodynamic Optimization and Applications Belegung eingeschränkt - Details anzeigen
Maximale Teilnehmerzahl: 60
W4 KP2V + 1UK. Boulouchos, G. Georges, P. Kyrtatos
KurzbeschreibungEinführung in Kenngrössen, Kennfelder und Klassifizierung von internen Verbrennungsmotoren. Thermodynamische Analyse, vereinfachte Simulation des Motorenarbeitsprozess, Wärmeübertragungsmechanismen, Auflade- sowie Wärmerückgewinnungssysteme. Anwendung von Verbrennungsmotoren in Transport (inkl. Hybridisierung des Antriebstrangs) und dezentraler Coproduktion von Elektrizität und Wärme.
LernzielDie Studierenden lernen die Basiskonzepte des Verbrennungsmotors anhand der in der Kurzbeschreibung aufgeführten Themen. Das Wissen wird angewandt in verschiedenen Rechenübungen und in die Praxis gebraucht bei zwei Laborübungen am Motorenprüfstand. Die Studierenden kriegen einen Einblick in alternative Antriebskonzepte.
Skriptauf Englisch
LiteraturJ. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill
151-0293-00LCombustion and Reactive Processes in Energy and Materials TechnologyW4 KP2V + 1U + 2AK. Boulouchos, F.  Ernst, N. Noiray, Y. Wright
KurzbeschreibungThe students should become familiar with the fundamentals and with application examples of chemically reactive processes in energy conversion (combustion engines in particular) as well as the synthesis of new materials.
LernzielThe students should become familiar with the fundamentals and with application examples of chemically reactive processes in energy conversion (combustion engines in particular) as well as the synthesis of new materials. The lecture is part of the focus "Energy, Flows & Processes" on the Bachelor level and is recommended as a basis for a future Master in the area of energy. It is also a facultative lecture on Master level in Energy Science and Technology and Process Engineering.
InhaltReaction kinetics, fuel oxidation mechanisms, premixed and diffusion laminar flames, two-phase-flows, turbulence and turbulent combustion, pollutant formation, applications in combustion engines. Synthesis of materials in flame processes: particles, pigments and nanoparticles. Fundamentals of design and optimization of flame reactors, effect of reactant mixing on product characteristics. Tailoring of products made in flame spray pyrolysis.
SkriptNo script available. Instead, material will be provided in lecture slides and the following text book (which can be downloaded for free) will be followed:

J. Warnatz, U. Maas, R.W. Dibble, "Combustion:Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation", Springer-Verlag, 1997.

Teaching language, assignments and lecture slides in English
LiteraturJ. Warnatz, U. Maas, R.W. Dibble, "Combustion:Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation", Springer-Verlag, 1997.

I. Glassman, Combustion, 3rd edition, Academic Press, 1996.
151-0567-00LEngine Systems Information W4 KP3GC. Onder
KurzbeschreibungEinführung in heutige und zukünftige Verbrennungsmotorsysteme, insbesondere deren elektronische Steuerungen und Regelungen
LernzielModerne Methoden der Systemoptimierung und Regelung am Beispiel "Verbrennungsmotor" kennenlernen und an realen Motoren einüben. Aufbau und Funktionsweise von Antriebssystemen verstehen und quantitativ beschreiben können.
InhaltPhysikalische Phänomene und mathematische Modelle von Komponenten und Systemen (Gemischbildung, Laststeuerung, Aufladung, Emissionen, Antriebsstrangkomponenten, etc.). Fallstudien zum Thema modellbasierte optimale Auslegung und Steuerung / Regelung von Motorsystemen mit dem Ziel, Verbrauch und Schadstoffemissionen zu minimieren.
SkriptIntroduction to Modeling and Control of Internal Combustion Engine Systems
Guzzella Lino, Onder Christopher H.
2010, Second Edition, 354 p., hardbound
ISBN: 978-3-642-10774-0
Voraussetzungen / BesonderesKombinierte Haus- und Laborübung Motoren (Lambda- oder Leerlaufdrehzahlregelung), in Gruppen
151-0569-00LVehicle Propulsion Systems Information W4 KP3GC. Onder, P. Elbert
KurzbeschreibungEinführung in heutige und zukünftige Fahrzeugantriebssysteme, insbesondere in elektronische Steuerungen und Regelungen der Längsdynamik
LernzielModerne Methoden der Systemoptimierung und Regelung am Beispiel "Fahrzeug" kennenlernen. Aufbau und Funktionsweise von konventionellen und neuen Antriebssystemen verstehen und quantitativ beschreiben können
InhaltPhysikalische Phänomene und mathematische Modelle von Komponenten und Systemen (Schalt-, Automaten- und kontinuierliche Getriebe, unkonventionelle Energiespeicher, Elektroantriebe, Batterien, Hybridantriebe, Brennstoffzellensysteme, Rad/Strasse-Schnittstellen, automatische Bremssysteme (ABS), etc.).

Mathematische Methoden, CAE-Tools und Fallstudien zum Thema modellbasierte Auslegung und Steuerung / Regelung von Fahrzeugsystemen mit dem Ziel, Verbrauch und Schadstoffemissionen zu minimieren.
SkriptVehicle Propulsion Systems --
Introduction to Modeling and Optimization
Guzzella Lino, Sciarretta Antonio
2013, X, 409 p. 202 illus., Geb.
ISBN: 978-3-642-35912-5
Voraussetzungen / BesonderesVorlesungen von Prof. Dr. Ch. Onder und Dr. Ph. Elbert auch in Deutsch möglich.
529-0613-01LProcess Simulation and FlowsheetingW6 KP3GS. Papadokonstantakis
KurzbeschreibungThis course encompasses the theoretical principles of chemical process simulation, as well as its practical application in process analysis and optimization. The techniques for simulating stationary and dynamic processes are presented, and illustrated with case studies. Commercial software packages are presented as a key engineering tool for solving process flowsheeting and simulation problems.
LernzielThis course aims to develop the competency of chemical engineers in process flowsheeting and simulation. Specifically, students will develop the following skills:
- Deep understanding of chemical engineering fundamentals: the acquisition of new concepts and the application of previous knowledge in the area of chemical process systems and their mechanisms are crucial to intelligently simulate and evaluate processes.
- Modeling of general chemical processes and systems: students have to be able to identify the boundaries of the system to be studied and develop the set of relevant mathematical relations, which describe the process behavior.
- Mathematical reasoning and computational skills: the familiarization with mathematical algorithms and computational tools is essential to be capable of achieving rapid and reliable solutions to simulation and optimization problems. Hence, students will learn the mathematical principles necessary for process simulation and optimization, as well as the structure and application of process simulation software. Thus, they will be able develop criteria to correctly use commercial software packages and critically evaluate their results.
InhaltOverview of process simulation and flowsheeting
- Definition and fundamentals
- Fields of application
- Case studies

Process simulation
- Modeling strategies of process systems
- Mass and energy balances and degrees of freedom of process units and process systems

Process flowsheeting
- Flowsheet partitioning and tearing
- Solution methods for process flowsheeting
- Simultaneous methods
- Sequential methods

Process optimization and analysis
- Classification of optimization problems
- Linear programming
- Non-linear programming
- Optimization methods in process flowsheeting

Commercial software for simulation: Aspen Plus
- Thermodynamic property methods
- Reaction and reactors
- Separation / columns
- Convergence, optimisation & debugging
LiteraturAn exemplary literature list is provided below:
- Biegler, L.T., Grossmann I.E., Westerberg A.W., 1997, systematic methods of chemical process design. Prentice Hall, Upper Saddle River, US.
- Boyadjiev, C., 2010, Theoretical chemical engineering: modeling and simulation. Springer Verlag, Berlin, Germany.
- Ingham, J., Dunn, I.J., Heinzle, E., Prenosil, J.E., Snape, J.B., 2007, Chemical engineering dynamics: an introduction to modelling and computer simulation. John Wiley & Sons, United States.
- Reklaitis, G.V., 1983, Introduction to material and energy balances. John Wiley & Sons, United States.
Voraussetzungen / BesonderesA basic understanding of material and energy balances, thermodynamic property methods and typical unit operations (e.g., reactors, flash separations, distillation/absorption columns etc.) is required.
Energy Economics and Policy
NummerTitelTypECTSUmfangDozierende
102-0317-00LAdvanced Environmental Assessments
Masterstudierende Umweltingenieurwissenschaften mit Modul Ecological Systems Design dürfen die 102-0317-00 (3KP) nicht belegen, da diese bereits in 102-0307-01 Advanced Environmental, Social and Economic Assessments (5KP) enthalten ist.
W3 KP2GS. Hellweg, R. Frischknecht
KurzbeschreibungThis course deepens students' knowledge of the environmental assessment methodologies and their various applications.
LernzielThis course has the aim of deepening students' knowledge of the environmental assessment methodologies and their various applications. In particular, students completing the course should have the
- Ability to judge the scientific quality and reliability of environmental assessment studies, the appropriateness of inventory data and modelling, and the adequacy of life cycle impact assessment models and factors
- Knowledge about the current state of the scientific discussion and new research developments
- Ability to properly plan, conduct and interpret environmental assessment studies
- Knowledge of how to use LCA as a decision support tool for companies, public authorities, and consumers
Inhalt- Inventory developments, transparency, data quality, data completeness, and data exchange formats
- Allocation (multioutput processes and recycling)
- Hybrid LCA methods.
- Consequential and marginal analysis
- Recent development in impact assessment
- Spatial differentiation in Life Cycle Assessment
- Workplace and indoor exposure in Risk and Life Cycle Assessment
- Uncertainty analysis
- Subjectivity in environmental assessments
- Multicriteria analysis
- Case Studies
SkriptNo script. Lecture slides and literature will be made available on Moodle.
LiteraturLiterature will be made available on Moodle.
Voraussetzungen / BesonderesBasic knowledge of environmental assessment tools is a prerequisite for this class. Students that have not done classwork in this topic before are required to read an appropriate textbook before or at the beginning of this course (e.g. Jolliet, O et al. 2016: Environmental Life Cycle Assessment. CRC Press, Boca Raton - London - New York. ISBN 978-1-4398-8766-0 (Chapters 2-5.2)).
102-0317-03LAdvanced Environmental Assessment (Computer Lab I)W1 KP1US. Pfister
KurzbeschreibungDifferent tools and software used for environmental assessments, such as LCA are introduced. The students will have hands-on exercises in the computer rooms and will gain basic knowledge on how to apply the software and other resources in practice
LernzielBecome acquainted with various software programs for environmental assessment including Life Cycle Assessment, Environmental Risk Assessment, Probabilistic Modeling, Material Flow Analysis.
102-0317-04LAdvanced Environmental Assessment (Computer Lab II) Belegung eingeschränkt - Details anzeigen
Not for master students in Environmental Engineering choosing module Ecological System Design as already included in Environment and Computer Laboratory I (Year Course): 102-0527-00 and 102-0528-00.
W2 KP2PS. Pfister
KurzbeschreibungTechnical systems are investigated in projects, based on the software and tools introduced in the course 102-0317-03L Advanced Env. Assessment (Computer Lab I). The projects are created around a complete but simplified LCA study, where the students will learn how to answer a given question with target oriented methodologies using various software programs and data sources for env. assessment
LernzielBecome acquainted with utilizing various software programs for environmental assessment to perform a Life Cycle Assessment and learn how to address the challenges when analyzing a complex system with available data and software limitations.
Voraussetzungen / BesonderesPrerequisite is enrolment of 102-0317-00 Advanced Environmental Assessments and of 102-0317-03 Advanced Environmental Assessments (Computer Lab I) in parallel or in advance (both courses in HS).
  •  Seite  1  von  2 Nächste Seite Letzte Seite     Alle