Search result: Catalogue data in Autumn Semester 2018
Electrical Engineering and Information Technology Master | ||||||
Master Studies (Programme Regulations 2018) | ||||||
Systems and Control The core courses and specialization courses below are a selection for students who wish to specialize in the area of "Systems and Control", see https://www.ee.ethz.ch/studies/main-master/areas-of-specialisation.html. The individual study plan is subject to the tutor's approval. | ||||||
Core Courses These core courses are particularly recommended for the field of "Systems and Control". You may choose core courses form other fields in agreement with your tutor. A minimum of 24 credits must be obtained from core courses during the MSc EEIT. | ||||||
Foundation Core Courses | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|
227-0103-00L | Control Systems | W | 6 credits | 2V + 2U | F. Dörfler | |
Abstract | Study of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems. | |||||
Learning objective | Study of concepts and methods for the mathematical description and analysis of dynamical systems. The concept of feedback. Design of control systems for single input - single output and multivariable systems. | |||||
Content | Process automation, concept of control. Modelling of dynamical systems - examples, state space description, linearisation, analytical/numerical solution. Laplace transform, system response for first and second order systems - effect of additional poles and zeros. Closed-loop control - idea of feedback. PID control, Ziegler - Nichols tuning. Stability, Routh-Hurwitz criterion, root locus, frequency response, Bode diagram, Bode gain/phase relationship, controller design via "loop shaping", Nyquist criterion. Feedforward compensation, cascade control. Multivariable systems (transfer matrix, state space representation), multi-loop control, problem of coupling, Relative Gain Array, decoupling, sensitivity to model uncertainty. State space representation (modal description, controllability, control canonical form, observer canonical form), state feedback, pole placement - choice of poles. Observer, observability, duality, separation principle. LQ Regulator, optimal state estimation. | |||||
Literature | K. J. Aström & R. Murray. Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, 2010. R. C. Dorf and R. H. Bishop. Modern Control Systems. Prentice Hall, New Jersey, 2007. G. F. Franklin, J. D. Powell, and A. Emami-Naeini. Feedback Control of Dynamic Systems. Addison-Wesley, 2010. J. Lunze. Regelungstechnik 1. Springer, Berlin, 2014. J. Lunze. Regelungstechnik 2. Springer, Berlin, 2014. | |||||
Prerequisites / Notice | Prerequisites: Signal and Systems Theory II. MATLAB is used for system analysis and simulation. |
- Page 1 of 1