Search result: Catalogue data in Autumn Semester 2018

Chemistry Master Information
Master Studies (Programme Regulations 2018)
Electives
Inorganic Chemistry
NumberTitleTypeECTSHoursLecturers
529-0143-01LInorganic and Organometallic PolymersW6 credits3GH. Grützmacher, J. Grützmacher
Abstract1. Introduction: What are Inorganic Polymers
1.1. Classification, 1.2. Nomenclature, 1.3. Synthetic Strategies, 1.4. Characterisation
2. Polyphosphazenes
3. Polysiloxanes
4. Organometallic Polymers
5. Dendritic Molecules
6. Introduction to Inorganic Materials
ObjectiveUnderstanding of the current literature in the field of inorganic polymers and materials.
Lecture notesA manuscript will be distributed to the participants of the course.
LiteratureScript and recent orginal literature indicated in the course.
Prerequisites / NoticeBasis for the understanding of this lecture are the courses Allgemeine Chemie 1&2, Anorganische Chemie 1: Übergangsmetallchemie (Dozent Mezzetti).
Organic Chemistry
NumberTitleTypeECTSHoursLecturers
529-0243-01LTransition Metal Catalysis: From Mechanisms to Applications Information W6 credits3GB. Morandi
AbstractDetailed discussion of selected modern transition metal catalyzed reactions from a synthetic and mechanistic viewpoint
ObjectiveUnderstanding and critical evaluation of current research in transition metal catalysis. Design of mechanistic experiments to elucidate reaction mechanisms. Synthetic relevance of transition metal catalysis. Students will also learn about writing an original research proposal during a workshop.
ContentDetailed discussion of selected modern transition metal catalyzed reactions from a synthetic and mechanistic viewpoint. Synthetic applications of these reactions. Introduction and application of tools for the elucidation of mechanisms. Selected examples of topics include: C-H activation, C-O activation, C-C activation, gold catalysis, redox active ligands, main group redox catalysis, frustrated Lewis pairs.
Lecture notesLecture slides will be provided online. A Handout summarizing important concepts in organometallic and physical organic chemistry will also be provided. Useful references and handouts will also be provided during the workshop.

Slides will be uploaded 1-2 days before each lecture on Link (password will be given during the first lecture or can be requested by email)
LiteraturePrimary literature and review articles will be cited during the course.

The following textbooks can provide useful support for the course:

- Anslyn and Dougherty, Modern Physical Organic Chemistry, 1st Ed., University Science Books.
- Crabtree R., The Organometallic Chemistry of the Transition Metals, John Wiley & Sons, Inc.
- Hartwig J., Organotransition Metal Chemistry: From Bonding to Catalysis, University Science Books.
- J. P. Collman, L. S. Hegedus, J. R. Norton, R. G. Finke, Principles and Applications of Organotransition Metal Chemistry.
Prerequisites / NoticeRequired level: Courses in organic and physical chemistry of the first and second year as well as ACIII

Special requirement: each participant will have to come up with an independent research proposal to be presented orally at the end of the semester. A dedicated workshop will be organized in the middle of the semester to introduce the students to proposal writing and presentation.
529-0233-01LOrganic Synthesis: Methods and Strategies Information W6 credits3GE. M. Carreira
AbstractThe complex relation between structural analysis, methods leading to desired transformations, and insight into reaction mechanisms is exemplified. Relations between retrosynthetic analysis of target structures, synthetic methods and their combination in a synthetic strategy.
ObjectiveExtension and deepening of the knowledge in organic synthesis.
ContentConcepts of the planning of organic synthesis (strategy and tactics), retrosynthetic analysis. Structure-reactivity relation in the context of the synthesis of complex molecules.
LiteratureK. C. Nicolaou, E. J. Sorensen, Classics in Total Synthesis, Wiley-VCH 1996.
K. C. Nicolaou, S. A. Snyder, Classics in Total Synthesis II, Wiley-VCH 2003.
K. C. Nicolaou, J. Chen, Classics in Total Synthesis III, Wiley-VCH 2011.
Prerequisites / NoticeOC I-IV
529-0241-10LAdvanced Methods and Strategies in SynthesisW6 credits3GJ. W. Bode
AbstractAdvanced Modern Methods and Strategies in Synthesis
ObjectiveKnowledge of modern methods in asymmetric stereocontrol, enantioselective catalysis, and organic reaction mechanisms.
ContentCurrent trends in methods for and approaches to synthesis of complex natural products, pharmaceuticals, and biological molecules; fragment coupling and protecting group strategies; chemical ligation and biomolecules synthesis; enantioselective catalysis including ligand design and optimization; cross coupling reactions from preactivated precursors; C-H activation and oxidation chemistry; building block synthesis with chiral auxiliaries and reagents; new concepts in asymmetric catalysis. Analysis of key primarily literature including identification of trends, key precendents, and emerging topics will be emphasized.
Lecture noteswill be provided in class and online
LiteratureSuggesting Textbooks
1. Walsh and Kozlowski, Fundamentals of Asymmetric Catalysis, 1st Ed., University Science Books, 2009.
2. Anslyn and Dougherty, Modern Physical Organic Chemistry, 1st Ed., University Science Books, 2006.
Physical Chemistry
NumberTitleTypeECTSHoursLecturers
529-0433-01LAdvanced Physical Chemistry: Statistical ThermodynamicsW6 credits3GG. Jeschke, J. Richardson
AbstractIntroduction to statistical mechanics and thermodynamics. Prediction of thermodynamic and kinetic properties from molecular data.
ObjectiveIntroduction to statistical mechanics and thermodynamics. Prediction of thermodynamic and kinetic properties from molecular data.
ContentBasics of statistical mechanics and thermodynamics of classical and quantum systems. Concept of ensembles, microcanonical and canonical ensembles, ergodic theorem. Molecular and canonical partition functions and their connection with classical thermodynamics. Quantum statistics. Translational, rotational, vibrational, electronic and nuclear spin partition functions of gases. Determination of the equilibrium constants of gas phase reactions. Description of ideal gases and ideal crystals. Lattice models, mixing entropy of polymers, and entropic elasticity.
Lecture notesSee homepage of the lecture.
LiteratureSee homepage of the lecture.
Prerequisites / NoticeChemical Thermodynamics, Reaction Kinetics, Molecular Quantum Mechanics and Spectroscopy; Mathematical Foundations (Analysis, Combinatorial Relations, Integral and Differential Calculus)
529-0443-01LAdvanced Magnetic Resonance Information W6 credits3GB. H. Meier, M. Ernst, T. Wiegand
AbstractThe course is for advanced students and covers selected topics from magnetic resonance spectroscopy. This year, the lecture will introduce and discuss the theoretical foundation of high-resolution solid-state NMR under magic-angle spinning.
ObjectiveThe aim of the course is to familiarize the students with the basic concepts of modern high-resolution solid-state NMR. Starting from the mathematical description of spin dynamics, important building blocks for multi-dimensional experiments are discussed to allow students a better understanding of modern solid-state NMR experiments. Particular emphasis is given to achiving high spectral resolution.
ContentThe basic principles of NMR in solids will be introduced. After the discussion of basic tools to describe NMR experiments, basic methods and experiments will be discussed, e.g., magic-angle spinning, cross polarization, decoupling, and recoupling experiments. Such basic building blocks allow a tailoring of the effective Hamiltonian to the needs of the experiment. These basic building blocks can then be combined in different ways to obtain spectra that contain the desired information.
Lecture notesA script which covers the topics will be distributed in the lecture and will be accessible through the web page Link
529-0445-01LAdvanced Optics and SpectroscopyW6 credits3GR. Signorell, G. David
AbstractThis course provides an introduction to the interaction of light with nano- and microparticles followed by an overview of applications of current interest. Examples range from nanoparticles for medical applications and sensing to the role of the interaction of solar radiation with aerosol particles and cloud droplets for the climate.
ObjectiveThe students will be introduced to the basic concepts of the interaction of light with nano- and microparticles. The combination of basic concepts with different applications will enable students to apply their knowledge to new problems in various fields where nanoscale objects play a role.
ContentLight interacts surprisingly differently with small particles than with bulk or with gas phase materials. The first part of the course provides a basic but rigorous introduction into the interaction of light with nano- and microparticles. The emphasis is on the classical treatment of absorption and scattering of light by small particles. The strengths and limits of this conventional approach will be discussed. The second part of the course is devoted to a broad range of applications. Here topics include: Plasmon resonances in metallic systems, metallo-dielectric nanoparticles for medical applications, the use of lasers for optical trapping and characterization of single particles, vibrational excitons in dielectric nanoparticles, interaction of light with aerosol particles and cloud droplets for remote sensing applications and climate predictions, characterization of ultrafine aerosol particles by photoemission using velocity map imaging.
Lecture noteswill be distributed during the course
LiteratureBasics: Absorption and Scattering of Light by Small Particles, C. F. Bohren and D. R. Huffman, John Wiley & Sons, Inc.

Applications: References will be provided during the course.
Analytical Chemistry
NumberTitleTypeECTSHoursLecturers
529-0043-01LAnalytical Strategy Information W6 credits3GR. Zenobi, M. Badertscher, G. Goubert, A. G. Graham, D. Günther
AbstractProblem-oriented development of analytical strategies and solutions.
ObjectiveAbility to create solutions for particular analytical problems.
ContentIndividual development of strategies for the optimal application of chemical, biochemical, and physico-chemical methods in analytical chemistry solving predefined problems. Experts from industry and administration present particular problems in their field of activity.
Principles of sampling.
Design and application of microanalytical systems.
Lecture notesCopies of problem sets and solutions will be distributed free fo charge
Prerequisites / NoticePrerequisites:
529-0051-00 "Analytical Chemistry I (3. Semester)"
529-0058-00 "Analytical Chemistry II (4. Semester)"
(or equivalent)
529-0049-00LAnalytical Methods for Characterization of Nanoparticles and Nanomaterials
Does not take place this semester.
W2 credits2GC. Latkoczy
AbstractIntroduction to modern analytical methods used to fully characterize and identify nano-engineered materials and systems.
ObjectiveUnderstanding of analytical concepts used in nanotechnology, In-depth knowledge of most important methods used in industry and research, Introduction to selected industrial applications, Basic knowledge of production mechanisms of nano-engineered materials.
ContentNanotechnology is the basis of many main technological innovations of the 21st century. After more than twenty years of research, nanotechnologies are now increasingly employed for commercial use: they are used in hundreds of everyday consumer products, such as cosmetics, food, automotive, electronics and medical products. Nanoparticles can contribute to stronger, lighter, cleaner, smarter, better, etc. products.
Besides these positive effects, relatively little is still known about potential health and environmental effects and risks of such small nano-sized particles. Therefore, a lot of different industry customers are forced nowadays to monitor and regulate the size and concentration of nanoparticles in their nano-enabled products.
Above and beyond these regulatory requirements, most industries employing nanoparticles need to be able to online measure nanoparticles to meet their requirements towards quality control and production efficiency. All these requirements demand new precise, accurate, fast and innovative analysis methods to fully characterize nanoparticles in real-time and during the manufacturing process.
Lecture notesLecture notes will be provided
Prerequisites / NoticePrerequisites: 529-0051-00 "Analytical Chemistry I (3. Semester)", 529-0058-00 "Analytical Chemistry II (4. Semester)" (or equivalent)
529-0055-00LMethods of Elemental Analysis Restricted registration - show details W6 credits6SG. Schwarz, D. Bleiner
AbstractSeveral methods of quantitative elemental analysis are characterized systematically in practical work within small groups and a analytical question is answered. The findings are reviewed, compared between groups and teaching material developed.
ObjectiveDeep practical experience and comparison of analytical methods and concepts in self-handled work and review.
ContentElementanalytische Methoden
Biological Chemistry
NumberTitleTypeECTSHoursLecturers
529-0733-01LEnzymesW6 credits3GD. Hilvert
AbstractPrinciples of enzymatic catalysis, enzyme kinetics, mechanisms of enzyme-catalyzed reactions (group transfer reactions, carbon-carbon bond formation, eliminations, isomerisations and rearrangements), cofactor chemistry, enzymes in organic synthesis and the biosynthesis of natural products, catalytic antibodies.
ObjectiveOverview of enzymes, enzyme-catalyzed reactions and metabolic processes.
ContentPrinciples of enzymatic catalysis, enzyme kinetics, mechanisms of enzyme catalyzed reactions (group transfer reactions, carbon-carbon bond formation, eliminations, isomerisations and rearrangements), cofactor chemistry, enzymes in organic synthesis and the biosynthesis of natural products, catalytic antibodies.
Lecture notesA script will not be handed out.
LiteratureGeneral:
T. Bugg, An Introduction to Enzyme and Coenzyme Chemistry, Blackwell Science Ltd., Oxford, 1997.

In addition, citations from the original literature relevant to the individual lectures will be assigned weekly.
529-0735-01LChemical Aspects of BioimagingW6 credits3GP. Rivera Fuentes
AbstractThis course will introduce basic concepts of fluorescence spectroscopy and microscopy applied to the observation of biological systems. The course will focus on the design, preparation and implementation of small-molecule and protein-based probes for biological investigations.
ObjectiveTo understand the basic chemical aspects of bioimaging and photoactivation in biology.
ContentPrinciples of fluorescence spectroscopy and microscopy, fluorescent dyes and proteins, chemiluminescence, super-resolution microscopy, and fluorescent sensors.
Lecture notesHandouts, selected original literature, quizzes, and other materials will be provided electronically.
LiteratureJ. R. Lakowicz. Principles of Fluorescence Spectroscopy. Kluwer Academic / Plenum Publishers. 2006.

P. J. Walla. Modern Biophysical Chemistry: Detection and Analysis of Biomolecules. Wiley-VCH. 2014.

M. Chalfie; S. R. Kain (Eds.) Green Fluorescent Protein: Properties, Applications, and Protocols.
Wiley-Interscience. 2006.

R. W. Sabnis. Handbook of Fluorescent Dyes and Probes. John Wiley & Sons, Inc. 2015.

A. P. Demchenko. Introduction to Fluorescence Sensing. Springer Science. 2009.
Chemical Aspects of Energy
NumberTitleTypeECTSHoursLecturers
151-0209-00LRenewable Energy Technologies I
Does not take place this semester.
The lectures Renewable Energy Technologies I (151-0209-00L) and Renewable Energy Technologies II (529-0191-01L) can be taken independently from one another.
W4 credits3GA. Steinfeld
AbstractScenarios for world energy demand and CO2 emissions, implications for climate. Methods for the assessment of energy chains. Potential and technology of renewable energies: Biomass (heat, electricity, biofuels), solar energy (low temp. heat, solar thermal and photovoltaic electricity, solar chemistry). Wind and ocean energy, heat pumps, geothermal energy, energy from waste. CO2 sequestration.
ObjectiveScenarios for the development of world primary energy consumption are introduced. Students know the potential and limitations of renewable energies for reducing CO2 emissions, and their contribution towards a future sustainable energy system that respects climate protection goals.
ContentScenarios for the development of world energy consumption, energy intensity and economic development. Energy conversion chains, primary energy sources and availability of raw materials. Methods for the assessment of energy systems, ecological balances and life cycle analysis of complete energy chains. Biomass: carbon reservoirs and the carbon cycle, energetic utilisation of biomass, agricultural production of energy carriers, biofuels. Solar energy: solar collectors, solar-thermal power stations, solar chemistry, photovoltaics, photochemistry. Wind energy, wind power stations. Ocean energy (tides, waves). Geothermal energy: heat pumps, hot steam and hot water resources, hot dry rock (HDR) technique. Energy recovery from waste. Greenhouse gas mitigation, CO2 sequestration, chemical bonding of CO2. Consequences of human energy use for ecological systems, atmosphere and climate.
Lecture notesLecture notes will be distributed electronically during the course.
Literature- Kaltschmitt, M., Wiese, A., Streicher, W.: Erneuerbare Energien (Springer, 2003)

- Tester, J.W., Drake, E.M., Golay, M.W., Driscoll, M.J., Peters, W.A.: Sustainable Energy - Choosing Among Options (MIT Press, 2005)

- G. Boyle, Renewable Energy: Power for a sustainable futureOxford University Press, 3rd ed., 2012, ISBN: 978-0-19-954533-9

-V. Quaschning, Renewable Energy and Climate ChangeWiley- IEEE, 2010, ISBN: 978-0-470-74707-0, 9781119994381 (online)
Prerequisites / NoticeFundamentals of chemistry, physics and thermodynamics are a prerequisite for this course.

Topics are available to carry out a Project Work (Semesterarbeit) on the contents of this course.
Chemical Crystallography
NumberTitleTypeECTSHoursLecturers
529-0029-01LStructure DeterminationW6 credits3GM. D. Wörle, N. Trapp
AbstractAdvanced X-ray crystal structure analysis
ObjectiveTo gain a deeper understanding of crystal structure determination principles and practice by X-ray diffraction and the evaluation of results.
ContentReview of principles of diffraction and instrumentation, unit cells, lattices, and symmetry. Inorganic structural chemistry: sphere packings, ionic crystals, covalent networks, intermetallic compounds. Overview of powder diffraction and application of crystal chemistry for structure analysis of polycrystalline phases. Working safely with X-rays, crystal growth, selection and mounting, data collection strategies, data reduction, corrections for absorption, extinction and Lp, advanced structure solution theory and techniques: Patterson function, heavy atom technique, Fourier methods, direct methods. Structure modeling and refinement, disorder, twinning, false symmetry, interpretation of anisotropic shift parameters. Determination of absolute configuration, interpretation of results and scope of chemically useful information, validation and publication of results, critical evaluation of published crystal structures.
Lecture notesInformation and exercise sheets will be distributed in loose form.
LiteratureMain references

(1) W. Massa, "Crystal Structure Determination", 2nd Ed., 2004, Springer Verlag.

(2) J.D. Dunitz, "X-ray Analysis and the Structure of Organic Molecules", 1995, Verlag HCA.

Additional literature

(3) C. Hammond, "The Basics of Crystallography and Diffraction", 2nd Ed., 2001, International Union of Crystallography Texts on Crystallography 5, Oxford University Press.

(4) J.P. Glusker, M. Lewis & M. Rossi, "Crystal Structure Analysis for Chemists and Biologists", 1994, VCH Publishers.

(5) D. Blow, "Outline of Crystallography for Biologists", 2002 Oxford University Press.

(6) D. Schwarzenbach, "Kristallographie", 2001, Springer Verlag.

(7) C. Giacovazzo, H.L. Monaco, G. Artioli, D. Viterbo, G. Ferraris, G. Gilli, G. Zanotti & M. Catti, Fundamentals of Crystallography", edited by C. Giacovazzo, 2nd Ed., 2002, International Union of Crystallography Texts on Crystallography 7, Oxford University Press.

(8) W. Clegg, A.J. Blake, R.O. Gould & P. Main, "Crystal Structure Analysis - Principles and Practice", edited by W. Clegg, 2001, International Union of Crystallography Texts on Crystallography 6, Oxford University Press.

(9) J.P. Glusker & K.N. Trueblood, "Crystal Structure Analysis - A Primer", 2nd Ed., 1985, Oxford University Press.

(10) G. H. Stout, L. H. Jensen: X-Ray Structure Determination, J. Wiley & Sons, 1989.

(11) M. M. Woolfson: X-Ray Crystallography, Cambridge University Press, 1970.
Prerequisites / NoticeStudents will conduct the computational exercises and examples of structure solution and refinement on personal computers.

Prerequisite: Principles of Crystal Structure Determination (529-0039-00L).
Chemical Technology
NumberTitleTypeECTSHoursLecturers
636-0108-00LBiological Engineering and Biotechnology
Attention: This course was offered in previous semesters with the number: 636-0003-00L "Biological Engineering and Biotechnology". Students that already passed course 636-0003-00L cannot receive credits for course 636-0108-00L.
W4 credits3VM. Fussenegger
AbstractBiological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.
ObjectiveBiological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.
Content1. Insight Into The Mammalian Cell Cycle. Cycling, The Balance Between Proliferation and Cancer - Implications For Biopharmaceutical Manufacturing. 2. The Licence To Kill. Apoptosis Regulatory Networks - Engineering of Survival Pathways To Increase Robustness of Production Cell Lines. 3. Everything Under Control I. Regulated Transgene Expression in Mammalian Cells - Facts and Future. 4. Secretion Engineering. The Traffic Jam getting out of the Cell. 5. From Target To Market. An Antibody's Journey From Cell Culture to The Clinics. 6. Biology and Malign Applications. Do Life Sciences Enable the Development of Biological Weapons? 7. Functional Food. Enjoy your Meal! 8. Industrial Genomics. Getting a Systems View on Nutrition and Health - An Industrial Perspective. 9. IP Management - Food Technology. Protecting Your Knowledge For Business. 10. Biopharmaceutical Manufacturing I. Introduction to Process Development. 11. Biopharmaceutical Manufacturing II. Up- stream Development. 12. Biopharmaceutical Manufacturing III. Downstream Development. 13. Biopharmaceutical Manufacturing IV. Pharma Development.
Lecture notesHandout during the course.
Computational Chemistry
NumberTitleTypeECTSHoursLecturers
529-0003-01LAdvanced Quantum ChemistryW6 credits3GM. Reiher, S. Knecht
AbstractAdvanced, but fundamental topics central to the understanding of theory in chemistry and for solving actual chemical problems with a computer.
Examples are:
* Operators derived from principles of relativistic quantum mechanics
* Relativistic effects + methods of relativistic quantum chemistry
* Open-shell molecules + spin-density functional theory
* New electron-correlation theories
ObjectiveThe aim of the course is to provide an in-depth knowledge of theory and method development in theoretical chemistry. It will be shown that this is necessary in order to be able to solve actual chemical problems on a computer with quantum chemical methods.

The relativistic re-derivation of all concepts known from (nonrelativistic) quantum mechanics and quantum-chemistry lectures will finally explain the form of all operators in the molecular Hamiltonian - usually postulated rather than deduced. From this, we derive operators needed for molecular spectroscopy (like those required by magnetic resonance spectroscopy). Implications of other assumptions in standard non-relativistic quantum chemistry shall be analyzed and understood, too. Examples are the Born-Oppenheimer approximation and the expansion of the electronic wave function in a set of pre-defined many-electron basis functions (Slater determinants). Overcoming these concepts, which are so natural to the theory of chemistry, will provide deeper insights into many-particle quantum mechanics. Also revisiting the workhorse of quantum chemistry, namely density functional theory, with an emphasis on open-shell electronic structures (radicals, transition-metal complexes) will contribute to this endeavor. It will be shown how these insights allow us to make more accurate predictions in chemistry in practice - at the frontier of research in theoretical chemistry.
Content1) Introductory lecture: basics of quantum mechanics and quantum chemistry
2) Einstein's special theory of relativity and the (classical) electromagnetic interaction of two charged particles
3) Klein-Gordon and Dirac equation; the Dirac hydrogen atom
4) Numerical methods based on the Dirac-Fock-Coulomb Hamiltonian, two-component and scalar relativistic Hamiltonians
5) Response theory and molecular properties, derivation of property operators, Breit-Pauli-Hamiltonian
6) Relativistic effects in chemistry and the emergence of spin
7) Spin in density functional theory
8) New electron-correlation theories: Tensor network and matrix product states, the density matrix renormalization group
9) Quantum chemistry without the Born-Oppenheimer approximation
Lecture notesA set of detailed lecture notes will be provided, which will cover the whole course.
Literature1) M. Reiher, A. Wolf, Relativistic Quantum Chemistry, Wiley-VCH, 2014, 2nd edition
2) F. Schwabl: Quantenmechanik für Fortgeschrittene (QM II), Springer-Verlag, 1997
[english version available: F. Schwabl, Advanced Quantum Mechanics]
3) R. McWeeny: Methods of Molecular Quantum Mechanics, Academic Press, 1992
4) C. R. Jacob, M. Reiher, Spin in Density-Functional Theory, Int. J. Quantum Chem. 112 (2012) 3661
Link
5) K. H. Marti, M. Reiher, New Electron Correlation Theories for Transition Metal Chemistry, Phys. Chem. Chem. Phys. 13 (2011) 6750
Link
6) K.H. Marti, M. Reiher, The Density Matrix Renormalization Group Algorithm in Quantum Chemistry, Z. Phys. Chem. 224 (2010) 583
Link
7) E. Mátyus, J. Hutter, U. Müller-Herold, M. Reiher, On the emergence of molecular structure, Phys. Rev. A 83 2011, 052512
Link

Note also the standard textbooks:
A) A. Szabo, N.S. Ostlund. Verlag, Dover Publications
B) I. N. Levine, Quantum Chemistry, Pearson
C) T. Helgaker, P. Jorgensen, J. Olsen: Molecular Electronic-Structure Theory, Wiley, 2000
D) R.G. Parr, W. Yang: Density-Functional Theory of Atoms and Molecules, Oxford University Press, 1994
E) R.M. Dreizler, E.K.U. Gross: Density Functional Theory, Springer-Verlag, 1990
Prerequisites / NoticeStrongly recommended (preparatory) courses are: quantum mechanics and quantum chemistry
529-0004-01LComputer Simulation in Chemistry, Biology and Physics Information W6 credits4GP. H. Hünenberger
AbstractMolecular models, Force fields, Boundary conditions, Electrostatic interactions, Molecular dynamics, Analysis of trajectories, Quantum-mechanical simulation, Structure refinement, Application to real systems. Exercises: Analysis of papers on computer simulation, Molecular simulation in practice, Validation of molecular dynamics simulation.
ObjectiveIntroduction to computer simulation of (bio)molecular systems, development of skills to carry out and interpret computer simulations of biomolecular systems.
ContentMolecular models, Force fields, Spatial boundary conditions, Calculation of Coulomb forces, Molecular dynamics, Analysis of trajectories, Quantum-mechanical simulation, Structure refinement, Application to real systems. Exercises: Analysis of papers on computer simulation, Molecular simulation in practice, Validation of molecular dynamics simulation.
Lecture notesAvailable (copies of powerpoint slides distributed before each lecture)
LiteratureSee: Link
Prerequisites / NoticeSince the exercises on the computer do convey and test essentially different skills as those being conveyed during the lectures and tested at the oral exam, the results of the exercises are taken into account when evaluating the results of the exam (learning component, possible bonus of up to 0.25 points on the exam mark).

For more information about the lecture: Link
Material Science
NumberTitleTypeECTSHoursLecturers
327-0703-00LElectron Microscopy in Material ScienceW4 credits2V + 2UK. Kunze, R. Erni, S. Gerstl, F. Gramm, A. Käch, F. Krumeich, M. Willinger
AbstractA comprehensive understanding of the interaction of electrons with condensed matter and details on the instrumentation and methods designed to use these probes in the structural and chemical analysis of various materials.
ObjectiveA comprehensive understanding of the interaction of electrons with condensed matter and details on the instrumentation and methods designed to use these probes in the structural and chemical analysis of various materials.
ContentThis course provides a general introduction into electron microscopy of organic and inorganic materials. In the first part, the basics of transmission- and scanning electron microscopy are presented. The second part includes the most important aspects of specimen preparation, imaging and image processing. In the third part, recent applications in materials science, solid state physics, structural biology, structural geology and structural chemistry will be reported.
Lecture noteswill be distributed in English
LiteratureGoodhew, Humphreys, Beanland: Electron Microscopy and Analysis, 3rd. Ed., CRC Press, 2000
Thomas, Gemming: Analytical Transmission Electron Microscopy - An Introduction for Operators, Springer, Berlin, 2014
Thomas, Gemming: Analytische Transmissionselektronenmikroskopie: Eine Einführung für den Praktiker, Springer, Berlin, 2013
Williams, Carter: Transmission Electron Microscopy, Plenum Press, 1996
Reimer, Kohl: Transmission Electron Microscopy, 5th Ed., Berlin, 2008
Erni: Aberration-corrected imaging in transmission electron microscopy, Imperial College Press (2010, and 2nd ed. 2015)
Environmental Chemistry
NumberTitleTypeECTSHoursLecturers
529-0745-01LGeneral and Environmental ToxicologyW6 credits3VM. Arand, H. Nägeli, B. B. Stieger, I. Werner
AbstractToxicokinetic and toxicodynamic aspects of xenobiotic interactions with cellular structures and mechanisms. Toxic responses at the level of organs (immune-, neuro-, reproductive and genotoxicity) and organisms. Introduction into developmental toxicology and ecotoxicology.
ObjectiveUnderstanding of the impact of chemicals on biological systems; evaluation of the effects from different biomedical perspectives.
ContentExplanation of important interactions between xeniobiotic chemicals and cellular structures such as membranes, enzymes, and nucleic acids. Relevance of intake, distribution, excretion, and biochemical transformation processes. Relevance of mixtures. Explanation of important modes of toxic action such as immuno toxicity, neurotoxicity, reproduction toxicity, genotoxicity based on examples of certain xenobiotics and their effects on important organs.
Lecture notesCourse material will be handed out as the lectures progress
LiteratureTextbooks of pharmacology and toxicology (cf. list in course material)
Prerequisites / NoticeEducational basis: basic chemistry, biology and biochemistry
Economics and Technology Management
NumberTitleTypeECTSHoursLecturers
363-0389-00LTechnology and Innovation Management Information W3 credits2GS. Brusoni
AbstractThis course focuses on the analysis of innovation as a pervasive process that cut across organizational and functional boundaries. It looks at the sources of innovation, at the tools and techniques that organizations deploy to routinely innovate, and the strategic implications of technical change.
ObjectiveThis course intends to enable all students to:

- understand the core concepts necessary to analyze how innovation happens

- master the most common methods and tools organizations deploy to innovate

- develop the ability to critically evaluate the innovation process, and act upon the main obstacles to innovation
ContentThis course looks at technology and innovation management as a process. Continuously, organizations are faced with a fundamental decision: they have to allocate resources between well-known tasks that reliably generate positive results; or explore new ways of doing things, new technologies, products and services. The latter is a high risk choice. Its rewards can be high, but the chances of success are small.
How do firms organize to take these decisions? What kind of management skills are necessary to take them? What kind of tools and methods are deployed to sustain managerial decision-making in highly volatile environments? These are the central questions on which this course focuses, relying on a combination of lectures, case-based discussion, guest speakers, simulations and group work.
Lecture notesSlides will be available on the Moodle page
LiteratureReadings will be available on the Moodle page
Prerequisites / NoticeThe course content and methods are designed for students with some background in management and/or economics
  •  Page  1  of  2 Next page Last page     All