# Search result: Catalogue data in Autumn Semester 2018

Computational Science and Engineering Master | ||||||

Fields of Specialization | ||||||

Biology | ||||||

Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|

636-0007-00L | Computational Systems Biology | W | 6 credits | 3V + 2U | J. Stelling | |

Abstract | Study of fundamental concepts, models and computational methods for the analysis of complex biological networks. Topics: Systems approaches in biology, biology and reaction network fundamentals, modeling and simulation approaches (topological, probabilistic, stoichiometric, qualitative, linear / nonlinear ODEs, stochastic), and systems analysis (complexity reduction, stability, identification). | |||||

Objective | The aim of this course is to provide an introductory overview of mathematical and computational methods for the modeling, simulation and analysis of biological networks. | |||||

Content | Biology has witnessed an unprecedented increase in experimental data and, correspondingly, an increased need for computational methods to analyze this data. The explosion of sequenced genomes, and subsequently, of bioinformatics methods for the storage, analysis and comparison of genetic sequences provides a prominent example. Recently, however, an additional area of research, captured by the label "Systems Biology", focuses on how networks, which are more than the mere sum of their parts' properties, establish biological functions. This is essentially a task of reverse engineering. The aim of this course is to provide an introductory overview of corresponding computational methods for the modeling, simulation and analysis of biological networks. We will start with an introduction into the basic units, functions and design principles that are relevant for biology at the level of individual cells. Making extensive use of example systems, the course will then focus on methods and algorithms that allow for the investigation of biological networks with increasing detail. These include (i) graph theoretical approaches for revealing large-scale network organization, (ii) probabilistic (Bayesian) network representations, (iii) structural network analysis based on reaction stoichiometries, (iv) qualitative methods for dynamic modeling and simulation (Boolean and piece-wise linear approaches), (v) mechanistic modeling using ordinary differential equations (ODEs) and finally (vi) stochastic simulation methods. | |||||

Lecture notes | Link | |||||

Literature | U. Alon, An introduction to systems biology. Chapman & Hall / CRC, 2006. Z. Szallasi et al. (eds.), System modeling in cellular biology. MIT Press, 2010. B. Ingalls, Mathematical modeling in systems biology: an introduction. MIT Press, 2013 | |||||

636-0017-00L | Computational Biology | W | 6 credits | 3G + 2A | T. Stadler, C. Magnus, T. Vaughan | |

Abstract | The aim of the course is to provide up-to-date knowledge on how we can study biological processes using genetic sequencing data. Computational algorithms extracting biological information from genetic sequence data are discussed, and statistical tools to understand this information in detail are introduced. | |||||

Objective | Attendees will learn which information is contained in genetic sequencing data and how to extract information from this data using computational tools. The main concepts introduced are: * stochastic models in molecular evolution * phylogenetic & phylodynamic inference * maximum likelihood and Bayesian statistics Attendees will apply these concepts to a number of applications yielding biological insight into: * epidemiology * pathogen evolution * macroevolution of species | |||||

Content | The course consists of four parts. We first introduce modern genetic sequencing technology, and algorithms to obtain sequence alignments from the output of the sequencers. We then present methods for direct alignment analysis using approaches such as BLAST and GWAS. Second, we introduce mechanisms and concepts of molecular evolution, i.e. we discuss how genetic sequences change over time. Third, we employ evolutionary concepts to infer ancestral relationships between organisms based on their genetic sequences, i.e. we discuss methods to infer genealogies and phylogenies. Lastly, we introduce the field of phylodynamics, the aim of which is to understand and quantify population dynamic processes (such as transmission in epidemiology or speciation & extinction in macroevolution) based on a phylogeny. Throughout the class, the models and methods are illustrated on different datasets giving insight into the epidemiology and evolution of a range of infectious diseases (e.g. HIV, HCV, influenza, Ebola). Applications of the methods to the field of macroevolution provide insight into the evolution and ecology of different species clades. Students will be trained in the algorithms and their application both on paper and in silico as part of the exercises. | |||||

Lecture notes | Lecture slides will be available on moodle. | |||||

Literature | The course is not based on any of the textbooks below, but they are excellent choices as accompanying material: * Yang, Z. 2006. Computational Molecular Evolution. * Felsenstein, J. 2004. Inferring Phylogenies. * Semple, C. & Steel, M. 2003. Phylogenetics. * Drummond, A. & Bouckaert, R. 2015. Bayesian evolutionary analysis with BEAST. | |||||

Prerequisites / Notice | Basic knowledge in linear algebra, analysis, and statistics will be helpful. Programming in R will be required for the project work (compulsory continuous performance assessments). We provide an R tutorial and help sessions during the first two weeks of class to learn the required skills. However, in case you do not have any previous experience with R, we strongly recommend to get familiar with R prior to the semester start. For the D-BSSE students, we highly recommend the voluntary course „Introduction to Programming“, which takes place at D-BSSE from Wednesday, September 12 to Friday, September 14, i.e. BEFORE the official semester starting date Link For the Zurich-based students without R experience, we recommend the R course Link, or working through the script provided as part of this R course. | |||||

636-0706-00L | Spatio-Temporal Modelling in Biology | W | 4 credits | 3G | D. Iber | |

Abstract | This course focuses on modeling spatio-temporal problems in biology, in particular on the cell and tissue level. The main focus is on mechanisms and concepts, but mathematical and numerical techniques are introduced as required. Biological examples discussed in the course provide an introduction to key concepts in developmental biology. | |||||

Objective | Students will learn state-of-the-art approaches to modelling spatial effects in dynamical biological systems. The course provides an introduction to dynamical system, and covers the mathematical analysis of pattern formation in growing, developing systems, as well as the description of mechanical effects at the cell and tissue level. The course also provides an introduction to image-based modelling, i.e. the use of microscopy data for model development and testing. The course covers classic as well as current approaches and exposes students to open problems in the field. In this way, the course seeks to prepare students to conduct research in the field. The course prepares students for research in developmental biology, as well as for applications in tissue engineering, and for biomedical research. | |||||

Content | 1. Introduction to Modelling in Biology 2. Morphogen Gradients 3. Dynamical Systems 4. Cell-cell Signalling (Dr Boareto) 5. Travelling Waves 6. Turing Patterns 7. Chemotaxis 8. Mathematical Description of Growing Biological Systems 9. Image-Based Modelling 10. Tissue Mechanics 11. Cell-based Tissue Simulation Frameworks 12. Plant Development (Dr Dumont) 13. Growth Control 14. Summary | |||||

Lecture notes | All lecture material will be made available online Link | |||||

Literature | The lecture course is not based on any textbook. The following textbooks are related to some of its content. The textbooks may be of interest for further reading, but are not necessary to follow the course: Murray, Mathematical Biology, Springer Forgacs and Newman, Biological Physics of the Developing Embryo, CUP Keener and Sneyd, Mathematical Physiology, Springer Fall et al, Computational Cell Biology, Springer Szallasi et al, System Modeling in Cellular Biology, MIT Press Wolkenhauer, Systems Biology Kreyszig, Engineering Mathematics, Wiley | |||||

Prerequisites / Notice | The course is self-contained. The course assumes no background in biology but a good foundation regarding mathematical and computational techniques. |

- Page 1 of 1