Search result: Catalogue data in Autumn Semester 2018

Health Sciences and Technology Master Information
Major in Human Health, Nutrition and Environment
Compulsory Courses
NumberTitleTypeECTSHoursLecturers
701-1701-00LHuman Health, Nutrition and Environment: Term Paper Restricted registration - show details
Only for students of the Major Human Health, Nutrition and Environment.
O6 credits13AJ. Nuessli Guth, T. Julian, K. McNeill, M. B. Zimmermann
AbstractWriting of a review paper of scientific quality on a topic in the domain of Human Health, Nutrition and Environment based on critical evaluation of scientific literature.
Objective- Acquisition of knowledge in the field of the review paper
- Assessment of original literature as well as synthesis and analysis of the findings
- Practising of academic writing in English
- Giving an oral presentation with discussion on the topic of the review paper
ContentTopics are offered in the domains of the major 'Human Health, Nutrition and Environment' covering 'Public Health', 'Infectious Diseases', 'Nutrition and Health' and 'Environment and Health'.
Lecture notesGuidelines will be handed out in the beginning.
LiteratureLiterature will be identified based on the topic chosen.
376-0300-00LTranslational Science for Health and Medicine Restricted registration - show details O3 credits2GJ. Goldhahn, C. Wolfrum
AbstractTranslational science is a cross disciplinary scientific research that is motivated by the need for practical applications that help people. The course should help to clarify basics of translational science, illustrate successful applications and should enable students to integrate key features into their future projects.
ObjectiveAfter completing this course, students will be able to understand:
Principles of translational science (including project planning, ethics application, basics of resource management and interdisciplinary communication)
ContentWhat is translational science and what is it not?
How to identify need?
- Disease concepts and consequences for research
- Basics about incidence, prevalence etc., and orphan indications
How to choose the appropriate research type and methodology
- Ethical considerations including ethics application
- Pros and cons of different types of research
- Coordination of complex approaches incl. timing and resources
How to measure success?
- Outcome variables
- Improving the translational process
Challenges of communication?
How independent is translational science?
- Academic boundary conditions vs. industrial influences
Positive and negative examples will be illustrated by distinguished guest speakers.
376-0302-01LGCP Basic Course (Modul 1 and 2) Restricted registration - show details
Only for Health Sciences and Technology MSc.
O1 credit1GG. Senti
AbstractThe basic course in "Good Clinical Practice" (GCP) contains of two full-time training days (Module 1 and Module 2) and addresses elementary aspects for the appropriate conduct of clinical trials and non-clinical research projects involving human beings. Successful participation will be confirmed by a certificate that is recognized by the Swiss authorities.
ObjectiveStudents will get familiar with:
- Key Ethics documents
- (Inter)national Guidelines and Laws (e.g. ICH-GCP, DIN EN ISO 14155, TPA, HRA)
- Sequence of research projects and project-involved parties
- Planning of research projects (statistics, resources, study design, set-up of the study protocol)
- Approval of research projects by Authorities (SwissEthics, Swissmedic, FOPH)
- Roles and responsibilities of project-involved parties

Students will learn how to:
- Classify research projects according the risk-based approach of the HRA
- Write a study protocol
- Inform participating patients/study subjects
- Obtain consent by participating patients/study subjects
- Classify, document and report Adverse Events
- Handle projects with biological material from humans and/or health- related personal data
ContentModule 1:
Research and Research Ethics, Guidelines, (inter)national Legislation, Development of therapeutic products, Methodology (Study Design), Study documents (Study protocol, Investigator's Brochure, Patient Information Leaflet, Informed Consent Form)

Module 2:
Roles and Responsibilities, Approval procedures, Notification and Reporting, Study documentation, Research with biological material and health-related data, data protection, data retention
Electives
Elective Courses I
NumberTitleTypeECTSHoursLecturers
401-0629-00LApplied BiostatisticsW4 credits3GM. Müller
AbstractPrinciples and main methods in biostatistics with emphasis on practical aspects. Experimental and observational studies. Regression and analysis of variance. Introduction into survival analysis.
ObjectiveGetting an overwiew of the problems and statistical methods used in health sciences. Practise in using the software R to analyze data and interpreting the sults.
ContentExperimental and observational studies. Relative risks and odds ratios. Diagnostic tests, ROC analysis. Multiple linear and logistic regression, analysis of variance. Introduction into survival analysis.
Lecture notessee teaching document repository
LiteratureLe, Chap T. and Eberly, L.: Introductory Biostatistics. Wiley Interscience, 2014.

Norman, G. and Streiner, D.: Biostatistics. The Bare Essentials. pmph USA. 3th edition 2008.

Rosner B: Fundamentals of Biostatistics. Duxbury Press, 7th edition, 2010.
Prerequisites / NoticeThe statistical package R will be used in the exercises.
If you are unfamiliar with R, I highly recommend the online R course etutoR.
752-6105-00LEpidemiology and Prevention
Information for UZH students:
Enrolment to this course unit only possible at ETH. No enrolment to module CS16_101 at UZH.

Please mind the ETH enrolment deadlines for UZH students: Link
W3 credits2VM. Puhan, R. Heusser
AbstractThe module „Epidemiology and prevention“ describes the process of scientific discovery from the detection of a disease and its causes, to the development and evaluation of preventive and treatment interventions and to improved population health.
ObjectiveThe overall goal of the course is to introduce students to epidemiological thinking and methods, which are criticial pillars for medical and public health research. Students will also become aware on how epidemiological facts are used in prevention, practice and politics.
ContentThe module „Epidemiology and prevention“ follows an overall framework that describes the course of scientific discovery from the detection of a disease to the development of prevention and treatment interventions and their evaluation in clinical trials and real world settings. We will discuss study designs in the context of existing knowledge and the type of evidence needed to advance knowledge. Examples form nutrition, chronic and infectious diseases will be used in order to show the underlying concepts and methods.
752-6151-00LPublic Health ConceptsW3 credits2VR. Heusser
AbstractThe module "public health concepts" offers an introduction to key principles of public health. Students get acquainted with the concepts and methods of epidemiology. Students also learn to use epidemiological data for prevention and health promotion purposes. Public health concepts and intervention strategies are presented, using examples from infectious and chronic diseases.
ObjectiveAt the end of this module students are able:
- to interpret the results of epidemiological studies
- to critically assess scientific literature
- to know the definition, dimensions and determinants of health
- to plan public health interventions and health promotion projects
ContentConcepts of descriptive and analytical epidemiology, study designs, measures of effect, confounding and bias, screening, surveilllance, definition of health and health promotion, health dimensions and health determinants, prevention strategies, public health interventions, public health action cycle, epidemiology and prevention of infectious and chronic diseases (HIV, Tuberculosis, Obesity, Public health nutrition).
Lecture notesHandouts are provided to students in the classroom.
Elective Courses II
Module: Infectious Diseases
NumberTitleTypeECTSHoursLecturers
551-0223-00LImmunology IIIW4 credits2VM. Kopf, M. Bachmann, S. B. Freigang, J. Kisielow, A. Lanzavecchia, S. R. Leibundgut, A. Oxenius, R. Spörri, L. Tortola
AbstractThis course provides a detailed understanding of
- development of T and B cells
- the dynamics of a immune response during acute and chronic infection
- mechanisms of immunopathology
- modern vaccination strategies
Key experimental results will be shown to help understanding how immunological text book knowledge has evolved.
ObjectiveObtain a detailed understanding of
- the development, activation, and differentiation of different types of T cells and their effectormechanisms during immune responses,
- Recognition of pathogenic microorganisms by the host cells and molecular events thereafter,
- events and signals for maturation of naive B cells to antibody producing plasma cells and memory B cells.
- Optimization of B cell responses by intelligent design of new vaccines
Contento Development and selection of CD4 and CD8 T cells, natural killer T cells (NKT), and regulatory T cells (Treg)
o NK T cells and responses to lipid antigens
o Differentiation, characterization, and function of CD4 T cell subsets such as Th1, Th2, and Th17
o Overview of cytokines and their effector function
o Co-stimulation (signals 1-3)
o Dendritic cells
o Evolution of the "Danger" concept
o Cells expressing Pattern Recognition Receptors and their downstream signals
o T cell function and dysfunction in acute and chronic viral infections
LiteratureDocuments of the lectures are available for download at:
Link
Prerequisites / NoticeImmunology I and II recommended but not compulsory
701-0263-01LSeminar in Evolutionary Ecology of Infectious DiseasesW3 credits2GA. Mikaberidze, S. Bonhoeffer, R. R. Regös
AbstractStudents of this course will discuss current topics from the field of infectious disease biology. From a list of publications, each student chooses some themes that he/she is going to explain and discuss with all other participants and under supervision. The actual topics will change from year to year corresponding to the progress and new results occuring in the field.
ObjectiveThis is an advanced course that will require significant student participation.  Students will learn how to evaluate and present scientific literature and trace the development of ideas related to understanding the ecology and evolutionary biology of infectious diseases.
ContentA core set of ~10 classic publications encompassing unifying themes in infectious disease ecology and evolution, such as virulence, resistance, metapopulations, networks, and competition will be presented and discussed.  Pathogens will include bacteria, viruses and fungi.  Hosts will include animals, plants and humans.
Lecture notesPublications and class notes can be downloaded from a web page announced during the lecture.
LiteraturePapers will be assigned and downloaded from a web page announced during the lecture.
701-1471-00LEcological Parasitology Restricted registration - show details
Number of participants limited to 20. A minimum of 6 students is required that the course will take place.

Waiting list will be deleted on 28.09.2018.
W3 credits1V + 1PH. Hartikainen, O. E. Seppälä
AbstractCourse focuses on the ecology and evolution of macroparasites and their hosts. Through lectures and practical work, students learn about diversity and natural history of parasites, adaptations of parasites, ecology of host-parasite interactions, applied parasitology, and human macroparasites in the modern world.
Objective1. Identify common macroparasites in aquatic organisms.
2. Understand ecological and evolutionary processes in host-parasite interactions.
3. Conduct parasitological research
ContentLectures:
1. Diversity and natural history of parasites (i.e. systematic groups and life-cycles).
2. Adaptations of parasites (e.g. evolution of life-cycles, host manipulation).
3. Ecology of host-parasite interactions (e.g. parasite communities, effects of environmental changes).
4. Applied parasitology (e.g. aquaculture and fisheries).
5. Human macroparasites (schistosomiasis, malaria).

Practical exercises:
1. Examination of parasites in fish (identification of species and description of parasite communities).
2. Examination of parasites in molluscs (identification and examination of host exploitation strategies).
3. Examination of parasites in amphipods (identification and examination of effects on hosts).
Prerequisites / NoticeThe three practicals will take place at the 9.10.2018, the 23.10.2018 and the 6.11.2018 at Eawag Dübendorf from 08:15 - 12:00.
701-1703-00LEvolutionary Medicine for Infectious Diseases Restricted registration - show details
Number of participants limited to 35.
W3 credits2GA. Hall
AbstractThis course explores infectious disease from both the host and pathogen perspective. Through short lectures, reading and active discussion, students will identify areas where evolutionary thinking can improve our understanding of infectious diseases and, ultimately, our ability to treat them effectively.
ObjectiveStudents will learn to (i) identify evolutionary explanations for the origins and characteristics of infectious diseases in a range of organisms and (ii) evaluate ways of integrating evolutionary thinking into improved strategies for treating infections of humans and animals. This will incorporate principles that apply across any host-pathogen interaction, as well as system-specific mechanistic information, with particular emphasis on bacteria and viruses.
ContentWe will cover several topics where evolutionary thinking is relevant to understanding or treating infectious diseases. This includes: (i) determinants of pathogen host range and virulence, (ii) dynamics of host-parasite coevolution, (iii) pathogen adaptation to evade or suppress immune responses, (iv) antimicrobial resistance, (v) evolution-proof medicine. For each topic there will be a short (< 20 minutes) introductory lecture, before students independently research the primary literature and develop discussion points and questions, followed by interactive discussion in class.
LiteratureThe focus is on primary literature, but for some parts the following text books provide good background information:

Schmid Hempel 2011 Evolutionary Parasitology
Stearns & Medzhitov 2016 Evolutionary Medicine
Prerequisites / NoticeA basic understanding of evolutionary biology, microbiology or parasitology will be advantageous but is not essential.
752-4009-00LMolecular Biology of Foodborne PathogensW3 credits2VM. Loessner, M. Schuppler
AbstractThe course offers detailed information on selected foodborne pathogens and toxin producing organisms; the focus lies on relevant molecular biological aspects of pathogenicity and virulence, as well as on the occurrence and survival of these organisms in foods.
ObjectiveDetailed and current status of research and insights into the molecular basis of foodborne diseases, with focus on interactions of the microorganism or the toxins they produce with the human system. Understanding the relationship between specific types of food and the associated pathogens and microbial risks. Another focus lies on the currently available methods and techniques useful for the various purposes, i.e., detection, differentiation (typing), and antimicrobial agents.
ContentMolecular biology of infectious foodborne pathogens (Listeria, Vibrio, E. coli, Campylobacter, etc) and toxin-producing organisms (Bacillus, Clostridium, Staphylococcus). How and under which conditions will toxins and virulence factors be produced, and how do they work? How is the interaction between the human host and the microbial pathogen? What are the roles of food and the environment ? What can be done to interfere with the potential risks? Which methods are best suited for what approach? Last, but not least, the role of bacteriophages in microbial pathogenicity will be highlighted, in addition to various applications of bacteriophage for both diagnostics and antimicrobial intervention.
Lecture notesElectronic copies of the presentation slides (PDF) and additional material will be made available for download to registered students.
LiteratureRecommendations will be given in the first lecture
Prerequisites / NoticeLectures (2 hours) will be held as a single session of approximately 60+ minutes (10:15 until approx. 11:15 h), without break !
Module: Nutrition and Health
NumberTitleTypeECTSHoursLecturers
752-2122-00LFood and Consumer BehaviourW2 credits2VM. Siegrist, C. Hartmann
AbstractThis course focuses on food consumer behavior, consumer's decision-making processes and consumer's attitudes towards food products.
ObjectiveThe course provides an overview about the following topics: Factors influencing consumer's food choice, food and health, attitudes towards new foods and food technologies, labeling and food policy issues
752-5103-00LFunctional Microorganisms in Foods Restricted registration - show details W3 credits2GC. Lacroix, A. Geirnaert, L. Meile, C. Schwab
AbstractThis integration course will discuss new applications of microorganisms with functional properties in food and functional food products. Selected topics will be used to illustrate the rapid development but also limits of basic knowledge for applications of functional microorganisms to produce food with high quality, safety and potential health benefits for consumers.
ObjectiveTo understand the principles, roles and mechanisms of microorganisms with metabolic activities of high potential for application in traditional and functional foods utilization with high quality, safety and potential health benefits for the consumers. This course will integrate basic knowledge in food microbiology, microbial physiology, biochemistry, and technology.
ContentThis course will address selected and current topics on new applications of microorganisms with functional properties in food and functional food products and characterization of functionality and safety of food bacteria. Specialists from the Laboratory of Food Biotechnology, as well as invited speakers from the industry will contribute to the selected topics as follows:

- Probiotics and Prebiotics: Probiotics, functional foods and health, towards understanding molecular modes of probiotic action; Challenges for the production and addition of probiotics to foods; Prebiotics and other microbial substrates for gut functionality.

- Bioprotective Cultures and Antimicrobial Metabolites: Antifungal cultures and applications in foods; Antimicrobial peptide-producing cultures (bacteriocins) for enhancing food quality and safety; Development of new protective cultures, the long path from research to industry.

- Legal and Protection Issues Related Functional Foods

- Industrial Biotechnology of Flavor and Taste Development

- Safety of Food Starter Cultures and Probiotics

Students will be required to complete a group project on food products and ingredients with of from functional bacteria. The project will involve information research and analysis followed by an oral presentation and short writen report.
Lecture notesCopy of the power point slides from lectures will be provided.
LiteratureA list of topics for group projects will be supplied, with key references for each topic.
Prerequisites / NoticeThis lecture requires strong basics in microbiology.
752-6101-00LDietary Etiologies of Chronic DiseaseW3 credits2VM. B. Zimmermann
AbstractTo have the student gain understanding of the links between the diet and the etiology and progression of chronic diseases, including diabetes, gastrointestinal diseases, kidney disease, cardiovascular disease, arthritis and food allergies.
ObjectiveTo examine and understand the protective effect of foods and food ingredients in the maintenance of health and the prevention of chronic disease, as well as the progression of complications of the chronic diseases.
ContentThe course evaluates food and food ingredients in relation to primary and secondary prevention of chronic diseases including diabetes, gastrointestinal diseases, kidney disease, cardiovascular disease, arthritis and food allergies.
Lecture notesThere is no script. Powerpoint presentations will be made available on-line to students.
LiteratureTo be provided by the individual lecturers, at their discretion.
Prerequisites / NoticeNo compulsory prerequisites, but prior completion of the courses "Introduction to Nutritional Science" and "Advanced Topics in Nutritional Science" is strongly advised.
752-6402-00LNutrigenomicsW3 credits2VG. Vergères
AbstractNutrigenomics - toward personalized nutrition?
Breakthroughs in biology recently led nutrition scientists to apply modern tools (genomics, transcriptomics, proteomics, metabolomics, genetics, epigenetics) to the analysis of the interactions of food with humans. The lecture presents these tools and illustrates their application in selected topics relevant to human nutrition and food sciences.
Objective- Overall understanding of the transdisciplinary research being conducted under the term nutrigenomics.
- Overall understating of the omics technologies used in nutrigenomics and their applications to human nutrition and food science.
- Ability to critically evaluate the potential and risks associated with the field of nutrigenomics
Content- For the content of the script see section "Skript" below
- The lecture is completed by short presentations of the students (in group) of material related to the lecture. Contribution of the students to the presentation is a prerequisite for registration to the exam.
Lecture notesThe script is composed of circa 400 slides (ca 15 slides/lecture) organized in 9 modules

Module A
From biochemical nutrition research to nutrigenomics

Module B
Nutritional genomics

Module C
Nutrigenetics

Module D
Nutri-epigenomics

Module E
Transcriptomics in nutrition research

Module F
Proteomics in nutrition research

Module G
Metabolomics in nutrition research

Module H
Nutritional systems biology

Module I
Personalized nutrition - opportunities and challenges
LiteratureNo extra reading requested. Most slides in the lecture are referenced with web adresses.
Prerequisites / NoticeBasic training in biochemistry, molecular biology, physiology, and human nutrition. Interest in interdisciplinary sciences linking molecular biology to human health. Interest in the application of analytical laboratory methods to the understanding of human biology, in particular nutrition.
Module: Environment and Health
NumberTitleTypeECTSHoursLecturers
376-1353-00LNanostructured Materials SafetyW2 credits1VP. Wick
AbstractFundamentals in nanostructured material - living system interactions focusing on the main exposure routes, lung, gastrointestinal tract, skin and intravenous injection
ObjectiveUnderstanding the potential side effects of nanomaterials in a context-specific way, enabling to evaluate nanomaterial safety and provide knowledge to de-sign safer materials
Lecture notesHandouts provided during the classes and references therein as well as primary literature as case studies will be posted to the course website
Prerequisites / Noticecourse "Introduction to Toxicology"
701-1341-00LWater Resources and Drinking WaterW3 credits2GS. Hug, M. Berg, F. Hammes, U. von Gunten
AbstractThe course covers qualitative (chemistry and microbiology) and quantitative aspects of drinking water from the resource to the tap. Natural processes, anthropogenic pollution, legislation of groundwater and surface water and of drinking water as well as water treatment will be discussed for industrialized and developing countries.
ObjectiveThe goal of this lecture is to give an overview over the whole path of drinking water from the source to the tap and understand the involved physical, chemical and biological processes which determine the drinking water quality.
ContentThe course covers qualitative (chemistry and microbiology) and quantitative aspects of drinking water from the resource to the tap. The various water resources, particularly groundwater and surface water, are discussed as part of the natural water cycle influenced by anthropogenic activities such as agriculture, industry, urban water systems. Furthermore legislation related to water resources and drinking water will be discussed. The lecture is focused on industrialized countries, but also addresses global water issues and problems in the developing world. Finally unit processes for drinking water treatment (filtration, adsorption, oxidation, disinfection etc.) will be presented and discussed.
Lecture notesHandouts will be distributed
LiteratureWill be mentioned in handouts
  •  Page  1  of  1