Suchergebnis: Katalogdaten im Herbstsemester 2018

Energy Science and Technology Master Information
Master-Studium (Studienreglement 2018)
Kernfächer
Mindestens je 2 Kernfächer pro Fachrichtung müssen erfolgreich abgelegt werden.
Die Teilnahme am Kurs des "Fächerübergreifenden Energiewesens" ist für alle Studierenden obligatorisch.
Electrical Power Engineering
NummerTitelTypECTSUmfangDozierende
227-0122-00LIntroduction to Electric Power Transmission: System & TechnologyW6 KP4GC. Franck, G. Hug
KurzbeschreibungEinführung in die Theorie und Technologie elektrischer Energieübertragungssysteme.
LernzielAm Ende dieser Lerneinheit können die Studierenden: die Struktur von elektrischen Energieversorgungsystemen erklären, die wichtigsten Komponenten benennen und erklären warum sie gebraucht werden, die Modelle von Freileitungen und Transformatoren anwenden, die Technologie von Freileitungen erklären, sowie Lastflüsse, Strom- und Spannungstransienten und andere grundlegenden Kenngrössen berechnen.
InhaltAufbau elektrischer Energieversorgungssysteme, Transformator- und Freileitungsmodelle, Analyse und Leistungsflussberchnung in einfachen Systemen, Symmetrische und unsymmetrische Dreiphasensysteme, transiente Überspannungen und -ströme, Technologie und Prinzipien der Komponenten der elektrischen Energieversorgungssysteme.
SkriptVorlesungsskript in Englisch, Übungen und Musterlösungen, Übersetzung wichtiger Vokabeln: englisch-deutsch.
227-1635-00LElectric Circuits
Students without a background in Electrical Engineering must take "Electric Circuits" before taking "Introduction to Electric Power Transmission: System & Technology"
W4 KP3GM. Zima
KurzbeschreibungIntroduction to analysis methods and network theorems to describe operation of electric circuits. Theoretical foundations are essential for the analysis of the electric power transmission and distribution grids as well as many modern technological devices – consumer electronics, control systems, computers and communications.
LernzielAt the end of this course, the student will be able to: understand variables in electric circuits, evaluate possible approaches and analyse simple electric circuits with RLC elements, apply circuit theorems to simple meshed circuits, analyze AC circuits in a steady state and understand the connection of the explained principles to the modelling of the 3-phase electric power systems.
InhaltCourse will introduce electric circuits variables, circuit elements (resistive, inductive, capacitive), resistive circuits and theorems (Kirchhoffs’ laws, Norton and Thevenin equivalents), nodal and mesh analysis, superposition principle; it will continue by discussing the complete response circuits (RLC), sinusoidal analysis – ac steady state (complex power, reactive, active power) and conclude with the introduction to 3-phase analysis;
Mathematical foundations of the circuit analysis, such as matrix operations and complex numbers will be briefly reviewed.
This course is targeting students who have no prior background in electrical engineering.
Skriptlecture and exercises slides will be distributed after each lecture; additional materials to be accessed online (wileyplus)
LiteraturRichard C. Dorf, James A. Svoboda
Introduction to Electric Circuits, 9th Edition
Online materials: Link
Lecture slides and exercises slides
Voraussetzungen / BesonderesThis course is intended for students outside of D-ITET. No prior course in electrical engineering is required
Energy Flows and Processes
NummerTitelTypECTSUmfangDozierende
151-0293-00LCombustion and Reactive Processes in Energy and Materials TechnologyW4 KP2V + 1U + 2AK. Boulouchos, F.  Ernst, N. Noiray, Y. Wright
KurzbeschreibungThe students should become familiar with the fundamentals and with application examples of chemically reactive processes in energy conversion (combustion engines in particular) as well as the synthesis of new materials.
LernzielThe students should become familiar with the fundamentals and with application examples of chemically reactive processes in energy conversion (combustion engines in particular) as well as the synthesis of new materials. The lecture is part of the focus "Energy, Flows & Processes" on the Bachelor level and is recommended as a basis for a future Master in the area of energy. It is also a facultative lecture on Master level in Energy Science and Technology and Process Engineering.
InhaltReaction kinetics, fuel oxidation mechanisms, premixed and diffusion laminar flames, two-phase-flows, turbulence and turbulent combustion, pollutant formation, applications in combustion engines. Synthesis of materials in flame processes: particles, pigments and nanoparticles. Fundamentals of design and optimization of flame reactors, effect of reactant mixing on product characteristics. Tailoring of products made in flame spray pyrolysis.
SkriptNo script available. Instead, material will be provided in lecture slides and the following text book (which can be downloaded for free) will be followed:

J. Warnatz, U. Maas, R.W. Dibble, "Combustion:Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation", Springer-Verlag, 1997.

Teaching language, assignments and lecture slides in English
LiteraturJ. Warnatz, U. Maas, R.W. Dibble, "Combustion:Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation", Springer-Verlag, 1997.

I. Glassman, Combustion, 3rd edition, Academic Press, 1996.
151-1633-00LEnergy Conversion
This course is intended for students outside of D-MAVT.
W4 KP3GI. Karlin, G. Sansavini
KurzbeschreibungThis course is tailored to provide the students with a common introduction on thermodynamics and heat transfer. Students can gain a basic understanding of energy, energy interactions, and various mechanisms of heat transfer as well as their linkage to energy conversion technologies.
LernzielStudents will be able analyze and evaluate energy conversion and heat exchange processes from the thermodynamic perspective.

1. They will be able to describe a thermodynamic system and its state in the using phase diagrams for pure substances and to apply the first law of thermodynamics, energy balances, and mechanisms of energy transfer to or from a system.

2. Students will be able to describe processes/changes of state in the phase diagrams and evaluate start and end states and the exchange of heat and power in the process.

3. They will be able to introduce and apply the entropy and exergy balance to closed and open systems.

4. They will be able to apply the second law of thermodynamics to power cycles and processes, and determine the expressions for the thermal efficiencies and coefficients of performance for heat engines, heat pumps, and refrigerators. They will be able to evaluate the thermodynamic performance of cycles using phase diagrams and critically analyze the different parts of cycles and propose improvements to their efficiency.

5. Students will be able to apply energy balances to reacting systems for both steady-flow control volumes and fixed mass systems.

6. At the end of the course, they will be able to apply the basic mechanisms of heat transfer (conduction, convection, and radiation), and Fourier's law of heat conduction, Newton's law of cooling, and the Stefan–Boltzmann law of radiation. Finally, students will be able to solve various heat transfer problems encountered in practice.
Inhalt1. Thermodynamic systems, states and state variables
2. Properties of substances: Water, air and ideal gas
3. Energy conservation in closed and open systems: work, internal energy, heat and enthalpy
4. Second law of thermodynamics and entropy
5. Energy analysis of steam power cycles
6. Energy analysis of gas power cycles
7. Refrigeration and heat pump cycles
8. Maximal work and exergy analysis
9. Mixtures and psychrometry
10. Chemical reactions and combustion systems
11. Heat transfer
SkriptLecture slides and supplementary documentation will be available online.
LiteraturThermodynamics: An Engineering Approach, by Cengel, Y. A. and Boles, M. A., McGraw Hill
Voraussetzungen / BesonderesThis course is intended for students outside of D-MAVT.

Students are assumed to have an adequate background in calculus, physics, and engineering mechanics.
Energy Economics and Policy
NummerTitelTypECTSUmfangDozierende
363-0503-00LPrinciples of Microeconomics
GESS (Science in Perspective): Suitable for Master students.
Bachelor students should take the course ‚Einführung in die Mikroökonomie (363-1109-00L)‘.
W3 KP2GM. Filippini
KurzbeschreibungThe course introduces basic principles, problems and approaches of microeconomics. This provides them with reflective and contextual knowledge on how societies use scarce resources to produce goods and services and distribute them among themselves.
LernzielThe learning objectives of the course are:

(1) Students must be able to discuss basic principles, problems and approaches in microeconomics. (2) Students can analyse and explain simple economic principles in a market using supply and demand graphs. (3) Students can contrast different market structures and describe firm and consumer behaviour. (4) Students can identify market failures such as externalities related to market activities and illustrate how these affect the economy as a whole. (5) Students can also recognize behavioural failures within a market and discuss basic concepts related to behavioural economics. (6) Students can apply simple mathematical treatment of some basic concepts and can solve utility maximisation and cost minimisation problems.
SkriptLecture notes, exercises and reference material can be downloaded from Moodle.
LiteraturN. Gregory Mankiw and Mark P. Taylor (2017), "Economics", 4th edition, South-Western Cengage Learning.
The book can also be used for the course 'Principles of Macroeconomics' (Sturm)

For students taking only the course 'Principles of Microeconomics' there is a shorter version of the same book:
N. Gregory Mankiw and Mark P. Taylor (2017), "Microeconomics", 4th edition, South-Western Cengage Learning.

Complementary:
1. R. Pindyck and D. Rubinfeld (2018), "Microeconomics", 9th edition, Pearson Education.
2. Varian, H.R. (2014), "Intermediate Microeconomics", 9th edition, Norton & Company
Interdisciplinary Energy Management
NummerTitelTypECTSUmfangDozierende
227-1631-10LCase Studies: Energy Systems and Technology: Part 1 Belegung eingeschränkt - Details anzeigen
Only for Energy Science and Technology MSc.
O2 KP4GC. Franck, C. Schaffner
KurzbeschreibungThis course will allow the students to get an interdisciplinary overview of the “Energy” topic. It will explore the challenges to build a sustainable energy system for the future. This will be done through the means of case studies that the students have to work on. These case studies will be provided by industry partners.
LernzielThe students will understand the different aspects involved in designing solutions for a sustainable future energy system. They will have experience in collaborating in interdisciplinary teams. They will have an understanding on how industry is approaching new solutions.
SkriptDescriptions of case studies.
Wahlfächer
» Die Wahlfächer finden Sie hier.
Industriepraktikum
For MEST students enrolled under the 2018 regulations
NummerTitelTypECTSUmfangDozierende
227-1650-10LInternship in Industry Belegung eingeschränkt - Details anzeigen
Only for MEST students enrolled under the 2018 regulations
O12 KPexterne Veranstalter
KurzbeschreibungEs ist das Ziel der 12-wöchigen Praxis, Master-Studierenden die industriellen Arbeitsumgebungen näher zu bringen. Während dieser Zeit bietet sich ihnen die Gelegenheit, in aktuelle Projekte der Gastinstitution involviert zu werden.
Lernzielsiehe oben
Studienarbeit
For MEST students enrolled under the 2018 regulations
NummerTitelTypECTSUmfangDozierende
227-1101-00LHow to Write Scientific Texts in Engineering Sciences
Strongly recommended prerequisite for Semester Projects and Master Theses at D-ITET (MSc BME, MSc EEIT, MSc EST).
E-0 KPJ. Leuthold
KurzbeschreibungThe 4 hour lecture covers the basics of writing & presenting a scientific text. The focus will be on the structure and elements of a scientific text and not on the language. Citation rules, good practice of scientific writing and an overview on software tools will be part of the training.
The lecture will be thought on two afternoons. Some exercises will be built into the lecture.
LernzielKnowledge on structure and content of a scientific text. The course further is arranged to stimulate a discussion on how to properly write a legible scientific text versus writing an interesting novel. We will further discuss the practice of properly citing and critically reflect on recent plagiarism allegations.
Inhalt* Topic 1: Structure of a Scientific Text (The Title, the author list, the abstract, State-of-the Art, the "in this paper" paragraph, the scientific part, the summary, Equations, Figures).

* Topic 2: Power Point Presentations.

* Topic 3: Citation Rules and Citation Software.

* Topic 4: Guidelines for Research Integrity.
LiteraturETH "Citation Etiquette", see Link.

ETH Guidlines on "Guidelines for Research Integrity", see Link > Education > > Contacts, links & documents > Forms and documents > Brochures / guides.
Voraussetzungen / BesonderesStudents should already have a Bachelor degree and plan to do either a semester project or a master thesis in the immediate future.
227-1671-10LSemester Project
Only for MEST students enrolled under the 2018 regulations
O12 KP20ABetreuer/innen
KurzbeschreibungThe semester project is designed to train the students in solving specific problems from the field of Energy Science & Technology. This project uses the technical and social skills acquired during the master's program. The semester project ist advised by a professor and must be approved in advance by the tutor.
Lernzielsee above
Master-Studium (Studienreglement 2007)
Kernfächer
Obligatorische Kernfächer
NummerTitelTypECTSUmfangDozierende
151-1633-00LEnergy Conversion
This course is intended for students outside of D-MAVT.
O4 KP3GI. Karlin, G. Sansavini
KurzbeschreibungThis course is tailored to provide the students with a common introduction on thermodynamics and heat transfer. Students can gain a basic understanding of energy, energy interactions, and various mechanisms of heat transfer as well as their linkage to energy conversion technologies.
LernzielStudents will be able analyze and evaluate energy conversion and heat exchange processes from the thermodynamic perspective.

1. They will be able to describe a thermodynamic system and its state in the using phase diagrams for pure substances and to apply the first law of thermodynamics, energy balances, and mechanisms of energy transfer to or from a system.

2. Students will be able to describe processes/changes of state in the phase diagrams and evaluate start and end states and the exchange of heat and power in the process.

3. They will be able to introduce and apply the entropy and exergy balance to closed and open systems.

4. They will be able to apply the second law of thermodynamics to power cycles and processes, and determine the expressions for the thermal efficiencies and coefficients of performance for heat engines, heat pumps, and refrigerators. They will be able to evaluate the thermodynamic performance of cycles using phase diagrams and critically analyze the different parts of cycles and propose improvements to their efficiency.

5. Students will be able to apply energy balances to reacting systems for both steady-flow control volumes and fixed mass systems.

6. At the end of the course, they will be able to apply the basic mechanisms of heat transfer (conduction, convection, and radiation), and Fourier's law of heat conduction, Newton's law of cooling, and the Stefan–Boltzmann law of radiation. Finally, students will be able to solve various heat transfer problems encountered in practice.
Inhalt1. Thermodynamic systems, states and state variables
2. Properties of substances: Water, air and ideal gas
3. Energy conservation in closed and open systems: work, internal energy, heat and enthalpy
4. Second law of thermodynamics and entropy
5. Energy analysis of steam power cycles
6. Energy analysis of gas power cycles
7. Refrigeration and heat pump cycles
8. Maximal work and exergy analysis
9. Mixtures and psychrometry
10. Chemical reactions and combustion systems
11. Heat transfer
SkriptLecture slides and supplementary documentation will be available online.
LiteraturThermodynamics: An Engineering Approach, by Cengel, Y. A. and Boles, M. A., McGraw Hill
Voraussetzungen / BesonderesThis course is intended for students outside of D-MAVT.

Students are assumed to have an adequate background in calculus, physics, and engineering mechanics.
227-0122-00LIntroduction to Electric Power Transmission: System & TechnologyO6 KP4GC. Franck, G. Hug
KurzbeschreibungEinführung in die Theorie und Technologie elektrischer Energieübertragungssysteme.
LernzielAm Ende dieser Lerneinheit können die Studierenden: die Struktur von elektrischen Energieversorgungsystemen erklären, die wichtigsten Komponenten benennen und erklären warum sie gebraucht werden, die Modelle von Freileitungen und Transformatoren anwenden, die Technologie von Freileitungen erklären, sowie Lastflüsse, Strom- und Spannungstransienten und andere grundlegenden Kenngrössen berechnen.
InhaltAufbau elektrischer Energieversorgungssysteme, Transformator- und Freileitungsmodelle, Analyse und Leistungsflussberchnung in einfachen Systemen, Symmetrische und unsymmetrische Dreiphasensysteme, transiente Überspannungen und -ströme, Technologie und Prinzipien der Komponenten der elektrischen Energieversorgungssysteme.
SkriptVorlesungsskript in Englisch, Übungen und Musterlösungen, Übersetzung wichtiger Vokabeln: englisch-deutsch.
Wählbare Kernfächer
» Die Wählbaren Kernfächer finden Sie hier.
Multidisziplinfächer
With the consent of the tutor, the students are free to choose individually from the entire course offer of ETH Zürich.
» Auswahl aus sämtlichen Lehrveranstaltungen der ETH Zürich
Industriepraktikum
For MEST students enrolled under the 2007 regulations
NummerTitelTypECTSUmfangDozierende
227-1650-00LInternship in Industry Belegung eingeschränkt - Details anzeigen
Only for MEST students enrolled under the 2007 regulations
O8 KPexterne Veranstalter
KurzbeschreibungEs ist das Ziel der 12-wöchigen Praxis, Master-Studierenden die industriellen Arbeitsumgebungen näher zu bringen. Während dieser Zeit bietet sich ihnen die Gelegenheit, in aktuelle Projekte der Gastinstitution involviert zu werden.
Lernzielsiehe oben
Studienarbeit
For MEST students enrolled under the 2007 regulations
NummerTitelTypECTSUmfangDozierende
227-1101-00LHow to Write Scientific Texts in Engineering Sciences
Strongly recommended prerequisite for Semester Projects and Master Theses at D-ITET (MSc BME, MSc EEIT, MSc EST).
E-0 KPJ. Leuthold
KurzbeschreibungThe 4 hour lecture covers the basics of writing & presenting a scientific text. The focus will be on the structure and elements of a scientific text and not on the language. Citation rules, good practice of scientific writing and an overview on software tools will be part of the training.
The lecture will be thought on two afternoons. Some exercises will be built into the lecture.
LernzielKnowledge on structure and content of a scientific text. The course further is arranged to stimulate a discussion on how to properly write a legible scientific text versus writing an interesting novel. We will further discuss the practice of properly citing and critically reflect on recent plagiarism allegations.
Inhalt* Topic 1: Structure of a Scientific Text (The Title, the author list, the abstract, State-of-the Art, the "in this paper" paragraph, the scientific part, the summary, Equations, Figures).

* Topic 2: Power Point Presentations.

* Topic 3: Citation Rules and Citation Software.

* Topic 4: Guidelines for Research Integrity.
LiteraturETH "Citation Etiquette", see Link.

ETH Guidlines on "Guidelines for Research Integrity", see Link > Education > > Contacts, links & documents > Forms and documents > Brochures / guides.
Voraussetzungen / BesonderesStudents should already have a Bachelor degree and plan to do either a semester project or a master thesis in the immediate future.
227-1671-00LSemester Project
Only for MEST students enrolled under the 2007 regulations.
O8 KP20ABetreuer/innen
KurzbeschreibungThe semester project is designed to train the students in solving specific problems from the field of Energy Science & Technology. This project uses the technical and social skills acquired during the master's program. The semester project ist advised by a professor and must be approved in advance by the tutor.
Lernzielsee above
Wahlfächer
- Wählbare Kernfächer des Studienreglements 2007
- Wahlfächer des Studienreglements 2018

Diese Kurse sind besonders empfohlen, andere ETH-Kurse aus dem Feld Energy Science and Technology im weiteren Sinne können in Absprache mit dem Tutor gewählt werden.
Electrical Power Engineering
NummerTitelTypECTSUmfangDozierende
227-0113-00LLeistungselektronik Information W6 KP4GJ. W. Kolar
KurzbeschreibungVerständnis der Grundfunktion leistungselektronischer Energieumformer, Einsatzbereiche. Methoden der Analyse des Betriebsverhaltens und des regelungstechnischen Verhaltens, Dimensionierung. Beurteilung der Beeinflussung umgebender Systeme, Elektromagnetische Verträglichkeit.
LernzielVerständnis der Grundfunktion leistungselektronischer Energieumformer, Einsatzbereiche. Methoden der Analyse des Betriebsverhaltens und des regelungstechnischen Verhaltens, Dimensionierung. Beurteilung der Beeinflussung umgebender Systeme, Elektromagnetische Verträglichkeit.
InhaltGrundstruktur leistungselektronischer Systeme, Beispiele. DC/DC-Konverter, Potentialtrennung. Regelungstechnische Modellierung von DC/DC-Konvertern, State-Space-Averaging, PWM-Switch-Model. Leistungshalbleiter, Nichtidealitäten, Kühlung. Magnetische Bauelemente, Skin- und Proximity- Effekt, Dimensionierung. EMV. Einphasen- Diodenbrücke mit kapazitiver Glättung, Netzrückwirkungen, Leistungsfaktorkorrektur. Selbstgeführte Einphasen- u. Dreiphasen-Brückenschaltung mit eingeprägter Ausgangsspannung, Modulation, Raumzeigerbegriff. Netzgeführte Einphasen-Brückenschaltung, Kommutierung, Wechselrichterbetrieb, WR-Kippen. Netzgeführte Dreiphasen-Brückenschaltung, ungesteuert und gesteuert/kapazitive und induktive Glättung. Parallelschaltung netzgeführter Stromrichter, Saugdrosselschaltung. Gegenparallelschaltung netzgeführter Dreiphasen-Brückenschaltungen, Vierquadranten-Gleichstrommaschinenantrieb. Resonanz-Thyristorstromrichter, u-Zi-Diagramm.
SkriptSkript und Simulationsprogramm für interaktives Lernen und Visualisierung, Uebungen mit Musterlösungen
Voraussetzungen / BesonderesVoraussetzungen: Grundkenntnisse der Elektrotechnik und Signaltheorie.
227-0117-00LHochspannungstechnik II: Isolationstechnik
Die Vorlesungen Hochspannungstechnik I: Mess- und Versuchstechnik (227-0117-10L) und Hochspannungstechnik II: Isolationstechnik (227-0117-00L) können unabhängig voneinander besucht werden.
W6 KP4GC. Franck, U. Straumann
KurzbeschreibungVerstehen der grundlegenden Phänomene und Prinzipien, welche im Zusammenhang mit sehr hohen elektrischen Feldstärken auftreten. Diese Kenntnisse werden auf Dimensionierungen von Betriebsmitteln elektrischer Energieübertragungssysteme angewendet. Heute übliche Methoden der Computermodellierung werden vorgestellt und im Rahmen einer Übung verwendet.
LernzielDie Studierenden haben Kenntnis der grundlegenden Phänomene und Prinzipien, welche im Zusammenhang mit sehr hohen elektrischen Feldstärken auftreten. Sie verstehen die unterschiedlichen Mechanismen, die zum Versagen von Isolationssystemen führen und können Versagens-Kriterien zur Beurteilung von Hochspannungskomponenten anwenden. Sie sind in der Lage, Schwachstellen von Isolationssystemen zu identifizieren und Möglichkeiten zu deren Behebung zu nennen. Zudem kennen sie die gängigen Isolationssysteme und deren Dimensionierung in der Praxis.
Inhalt- Diskussion der für die Hochspannungstechnik relevanten Feldgleichungen
- analytische und numerische Lösung dieser Feldgleichungen, sowie Herleitung der wichtigen Ersatzschaltbilder zur Beschreibung von Feldern und Verlusten in Isolationen
- Einführung in die Gasphysik
- Mechanismus des Durchschlags in gasförmigen, flüssigen und festen Isolierungen, sowie in Isolationssystemen
- Methoden zur rechnerischen Bestimmung der elektrischen Festigkeit von gasförmigen, flüssigen und festen Isolierungen
- Anwendung der Erkenntnisse an Hochspannungskomponenten
- Exkursion zu Herstellern von Hochspannungskomponenten
SkriptVorlesungsunterlagen
LiteraturA. Küchler, Hochspannungstechnik, Springer Berlin, 4. Auflage, 2017 (ISBN: 978-3-662-54699-4)
227-0247-00LPower Electronic Systems I Information W6 KP4GJ. W. Kolar
KurzbeschreibungBasics of the switching behavior, gate drive and snubber circuits of power semiconductors are discussed. Soft-switching and resonant DC/DC converters are analyzed in detail and high frequency loss mechanisms of magnetic components are explained. Space vector modulation of three-phase inverters is introduced and the main power components are designed for typical industry applications.
LernzielDetailed understanding of the principle of operation and modulation of advanced power electronics converter systems, especially of zero voltage switching and zero current switching non-isolated and isolated DC/DC converter systems and three-phase voltage DC link inverter systems. Furthermore, the course should convey knowledge on the switching frequency related losses of power semiconductors and inductive power components and introduce the concept of space vector calculus which provides a basis for the comprehensive discussion of three-phase PWM converters systems in the lecture Power Electronic Systems II.
InhaltBasics of the switching behavior and gate drive circuits of power semiconductor devices and auxiliary circuits for minimizing the switching losses are explained. Furthermore, zero voltage switching, zero current switching, and resonant DC/DC converters are discussed in detail; the operating behavior of isolated full-bridge DC/DC converters is detailed for different secondary side rectifier topologies; high frequency loss mechanisms of magnetic components of converter circuits are explained and approximate calculation methods are presented; the concept of space vector calculus for analyzing three-phase systems is introduced; finally, phase-oriented and space vector modulation of three-phase inverter systems are discussed related to voltage DC link inverter systems and the design of the main power components based on analytical calculations is explained.
SkriptLecture notes and associated exercises including correct answers, simulation program for interactive self-learning including visualization/animation features.
Voraussetzungen / BesonderesPrerequisites: Introductory course on power electronics.
  •  Seite  1  von  3 Nächste Seite Letzte Seite     Alle