Search result: Catalogue data in Autumn Semester 2018
Food Science Bachelor | ||||||
1. Semester | ||||||
First Year Examinations | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|
529-2001-02L | Chemistry I | O | 4 credits | 2V + 2U | W. Uhlig, J. E. E. Buschmann, S. Canonica, P. Funck, E. C. Meister, R. Verel | |
Abstract | General Chemistry I: Chemical bond and molecular structure, chemical thermodynamics, chemical equilibrium. | |||||
Learning objective | Introduction to general and inorganic chemistry. Basics of the composition and the change of the material world. Introduction to the thermodynamically controlled physico-chemical processes. Macroscopic phenomena and their explanation through atomic and molecular properties. Using the theories to solve qualitatively and quantitatively chemical and ecologically relevant problems. | |||||
Content | 1. Stoichiometry 2. Atoms and Elements (Quantenmechanical Model of the Atom) 3. Chemical Bonding 4. Thermodynamics 5. Chemical Kinetics 6. Chemical Equilibrium (Acids and Bases, Solubility Equilibria) | |||||
Lecture notes | Online-Skript mit durchgerechneten Beispielen. | |||||
Literature | - Charles E. Mortimer, Chemie - Das Basiswissen der Chemie. 12. Auflage, Georg Thieme Verlag Stuttgart, 2015. Weiterführende Literatur: Brown, LeMay, Bursten CHEMIE (deutsch) Housecroft and Constable, CHEMISTRY (englisch) Oxtoby, Gillis, Nachtrieb, MODERN CHEMISTRY (englisch) | |||||
401-0251-00L | Mathematics I | O | 6 credits | 4V + 2U | A. Cannas da Silva | |
Abstract | This course covers mathematical concepts and techniques necessary to model, solve and discuss scientific problems - notably through ordinary differential equations. | |||||
Learning objective | Mathematics is of ever increasing importance to the Natural Sciences and Engineering. The key is the so-called mathematical modelling cycle, i.e. the translation of problems from outside of mathematics into mathematics, the study of the mathematical problems (often with the help of high level mathematical software packages) and the interpretation of the results in the original environment. The goal of Mathematics I and II is to provide the mathematical foundations relevant for this paradigm. Differential equations are by far the most important tool for modelling and are therefore a main focus of both of these courses. | |||||
Content | 1. Single-Variable Calculus: review of differentiation, linearisation, Taylor polynomials, maxima and minima, antiderivative, fundamental theorem of calculus, integration methods, improper integrals. 2. Linear Algebra and Complex Numbers: systems of linear equations, Gauss-Jordan elimination, matrices, determinants, eigenvalues and eigenvectors, cartesian and polar forms for complex numbers, complex powers, complex roots, fundamental theorem of algebra. 3. Ordinary Differential Equations: separable ordinary differential equations (ODEs), integration by substitution, 1st and 2nd order linear ODEs, homogeneous systems of linear ODEs with constant coefficients, introduction to 2-dimensional dynamical systems. | |||||
Literature | - Thomas, G. B.: Thomas' Calculus, Part 1 (Pearson Addison-Wesley). - Bretscher, O.: Linear Algebra with Applications (Pearson Prentice Hall). | |||||
Prerequisites / Notice | Prerequisites: familiarity with the basic notions from Calculus, in particular those of function and derivative. Mathe-Lab (Assistance): Mondays 12-14, Tuesdays 17-19, Wednesdays 17-19, in Room HG E 41. | |||||
551-0001-00L | General Biology I | O | 3 credits | 3V | U. Sauer, O. Y. Martin, A. Widmer | |
Abstract | Organismic biology to teach the basic principles of classical and molecular genetics, evolutionary biology and phylogeny. First in a series of two lectures given over two semesters for students of agricultural and food sciences, as well as of environmental sciences. | |||||
Learning objective | The understanding of some basic principles of biology (inheritance, evolution and phylogeny) and an overview of the diversity of life. | |||||
Content | The first semester focuses on the organismal biology aspects of genetics, evolution and diversity of life in the Campbell chapters 12-34. Week 1-7 by Alex Widmer, Chapters 12-25 12 Cell biology Mitosis 13 Genetics Sexual life cycles and meiosis 14 Genetics Mendelian genetics 15 Genetics Linkage and chromosomes 20 Genetics Evolution of genomes 21 Evolution How evolution works 22 Evolution Phylogentic reconstructions 23 Evolution Microevolution 24 Evolution Species and speciation 25 Evolution Macroevolution Week 8-14 by Oliver Martin, Chapters 26-34 26 Diversity of Life Introdution to viruses 27 Diversity of Life Prokaryotes 28 Diversity of Life Origin & evolution of eukaryotes 29 Diversity of Life Nonvascular&seedless vascular plants 30 Diversity of Life Seed plants 31 Diversity of Life Introduction to fungi 32 Diversity of Life Overview of animal diversity 33 Diversity of Life Introduction to invertebrates 34 Diversity of Life Origin & evolution of vertebrates | |||||
Lecture notes | no script | |||||
Literature | Campbell et al. (2015) Biology - A Global Approach. 10th Edition (Global Edition | |||||
Prerequisites / Notice | The lecture is the first in a series of two lectures given over two semesters for students with biology as as a basic subject. | |||||
701-0243-01L | Biology III: Essentials of Ecology | O | 3 credits | 2V | C. Buser Moser | |
Abstract | This lecture presents an introduction to ecology. It includes basic ecological concepts and the most important levels of complexity in ecological research. Ecological concepts are exemplified by using aquatic and terrestrial systems; corresponding methodological approaches are demonstrated. In a more applied part of the lecture threats to biodiversity and the appropriate management are discussed. | |||||
Learning objective | The objective of this lecture is to teach basic ecological concepts and the different levels of complexity in ecological research: the individual, the population, the community and the ecosystem level. The students should learn ecological concepts at these different levels in the context of concrete examples from terrestrial and aquatic ecology. Corresponding methods for studying the systems will be presented. A further aim of the lecture is that students achieve an understanding of biodiversity, why it is threatened and how it can be managed. | |||||
Content | - Übersicht der aquatischen und terrestrischen Lebensräume mit ihren Bewohnern - Einfluss von Umweltfaktoren (Temperatur, Strahlung, Wasser, Nährstoffe etc.) auf Organismen; Anpassung an bestimmte Umweltbedingungen - Populationsdynamik: Ursachen, Beschreibung, Vorhersage und Regulation - Interaktionen zwischen Arten (Konkurrenz, Koexistenz, Prädation, Parasitismus, Nahrungsnetze) - Lebensgemeinschaften: Struktur, Stabilität, Sukzession - Ökosysteme: Kompartimente, Stoff- und Energieflusse - Biodiversität: Variation, Ursachen, Gefährdung und Erhaltung - Aktuelle Naturschutzprobleme und -massnahmen - Evolutionäre Ökologie: Methodik, Spezialisierung, Koevolution | |||||
Lecture notes | Unterlagen, Vorlesungsfolien und relevante Literatur sind in der Lehrdokumentenablage abrufbar. Die Unterlagen für die nächste Vorlesung stehen jeweils spätestens am Freitagmorgen zur Verfügung. | |||||
Literature | Generelle Ökologie: Townsend, Harper, Begon 2009. Ökologie. Springer, ca. Fr. 70.- Aquatische Ökologie: Lampert & Sommer 1999. Limnoökologie. Thieme, 2. Aufl., ca. Fr. 55.-; Bohle 1995. Limnische Systeme. Springer, ca. Fr. 50.- Naturschutzbiologie: Baur B. et al. 2004. Biodiversität in der Schweiz. Haupt, Bern, 237 S. Primack R.B. 2004. A primer of conservation biology. 3rd ed. Sinauer, Mass. USA, 320 pp. | |||||
701-0027-00L | Environmental Systems I | O | 2 credits | 2V | C. Schär, S. Bonhoeffer, N. Dubois | |
Abstract | The lecture provides a science-based exploration of environmental aspects from three research fields: earth, climate, and health sciences. | |||||
Learning objective | The students are able to explain important properties of the three environmental systems, to discuss critical drivers, trends and conflicts of their use, and to compare potential solutions. | |||||
Content | The lecture discusses the role of the environmental systems based on selected environmental problems, among these the exploration of raw materials and fossil fuels, climate change and its impacts on man and environment, and the spread and control of infectious diseases in the human population and agricultural systems. | |||||
Lecture notes | Slides are provided by instructors and are accessible via moodle. | |||||
751-0013-00L | World Food System | O | 4 credits | 4V | N. Buchmann, J. Baumgartner, A. Bearth, R. Finger, M. Kreuzer, M. Loessner, E. J. Windhab | |
Abstract | Knowledge about the World Food System will be provided, based on case studies along food value chains in countries with various development stages and dependent on multiple boundary conditions. This shall generate profound understanding of the associated global challenges especially food scarcity, suboptimal diet and nutrition, food quality and safety as well as effects on the environment. | |||||
Learning objective | Attending this course, the students will recognize the elements of the World Food System (WFS) approach and the problems it this supposed to treat. They will especially comprehend the four pillars of global food security, namely (I) food availability (including sustainable production and processing), (I) access to food (physical and monetary), (III) food use (including quality and safety as well as the impact on human health and well being) and (IV) resilience to the boundary conditions (environmental, economic and political). This insight will make them aware of the global driving forces behind our ETH research on food security and is expected to alleviate motivation and understanding for the association of subsequent specific courses within a general context. The course equivalently implements agricultural and food sciences, thus supporting the interdisciplinary view on the WFS scope. | |||||
Content | Case studies on certain foods of plant and animal origin serve to demonstrate the entire food value chain from the production of raw material to processed food and its consumer relevant property functions. In doing so, important corresponding aspects for developed, emerging and developing countries are demonstrated, by use of engineering as well as natural and social science approaches. | |||||
Lecture notes | Handouts and links are provided online. | |||||
Literature | Information on books and other literature references is communicated during the course. | |||||
Prerequisites / Notice | The course shall particularly elucidate the cross section of Agro- and Food Sciences in the context of important global problems to be solved. Furthermore the students in the first year of studies shall be given some insight and outlook supporting the development of their views and interests in agricultural and food sciences further. The course is part of the block exam after the first study year. Paper copies can be used ("Open Book") during the on-line exam, but no other means are not allowed. The course is taught in German. | |||||
701-0757-00L | Principles of Economics | O | 3 credits | 2G | R. Schubert | |
Abstract | This course covers the bases for understanding micro- and macroeconomic issues and theories. Participants are given the tools to argue in economic and political terms and to evaluate the corresponding measures. Group and individual exercises deepen the knowledge gained. | |||||
Learning objective | Students are able to - describe fundamental micro- and macroeconomic issues and theories. - apply suitable economic arguments to a given theme. - evaluate economic measures. | |||||
Content | Supply and demand behaviour of firm and households; market equilibrium and taxation; national income and indicators; inflation ; unemployment; growth; macroeconomics policies | |||||
Lecture notes | available on electronic platform | |||||
Literature | Mankiw, N.G.: “Principles of Economics”, fourth edition, South-Western College/West, Mason 2006. German translation: Mankiw, N.G. : Grundzüge der Volkswirtschaftslehre, 3rd. edition, Stuttgart 2004. | |||||
Prerequisites / Notice | electronic plattform | |||||
Additional First Year Courses | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
252-0839-00L | Informatics | O | 2 credits | 2G | L. E. Fässler, M. Dahinden | |
Abstract | Students learn to apply selected concepts and tools from computer science for working on interdisciplinary projects. The following topics are covered: modeling and simulations, visualizing multi-dimensional data, managing data with lists and tables and with relational databases, introduction to programming, universal methods for algorithm design. | |||||
Learning objective | The students learn to - choose and apply appropriate tools from computer science, - process and analyze real-world data from their subject of study, - handle the complexity of real-world data, - know universal methods for algorithm design. | |||||
Content | 1. Modeling and simulations 2. Visualizing multidimensional data 3. Data management with lists and tables 4. Data management with a relational database 5. Introduction to macro programming 6. Introduction to programming with Python | |||||
Lecture notes | All materials for the lecture are available at www.evim.ethz.ch | |||||
Prerequisites / Notice | This course is based on application-oriented learning. The students spend most of their time working through projects with data from natural science and discussing their results with teaching assistants. To learn the computer science basics there are electronic tutorials available. | |||||
751-0801-00L | Biology I: Laboratory Exercises | O | 1 credit | 2U | E. B. Truernit | |
Abstract | Principles and methods of light microscopy. Preparation of specimen for microscopy; documentation. Anatomy of seed plants: From cells to organs. Special features of plant cells. Anatomy and function of plant organs. Anatomical adaptations to different environments. | |||||
Learning objective | Capability of preparing biological specimen, microscopy and documentation. Understanding the correlation between plant structure and function at the level of organs, tissues and cells. Awareness of the link between plant anatomy, systematics, physiology, ecology, and development. | |||||
Content | Basics of optics. Principles of light microscopy. Microscope parts and their function. Köhler illumination. Optical contrasting methods. Measuring object sizes with the microscope. Preparation of specimen for light microscopy. Plant tissue staining techniques. Special features of plant cells: Plastids, vacuole, cell wall. Anatomy of seed plants: From cells to organs. Anatomy and function of various plant tissues (epidermis, vascular tissue, wood, etc.). Anatomy and function of different plant organs (root, stem, leaf, flower, fruit, seed). Anatomical adaptations to different environments. | |||||
Lecture notes | Handouts | |||||
Literature | For further reading (not obligatory): Gerhard Wanner: Mikroskopisch-Botanisches Praktikum, Georg Thieme Verlag, Stuttgart. | |||||
Prerequisites / Notice | Groups of a maximum of 30 students. | |||||
529-0030-00L | Laboratory Course: Elementary Chemical Techniques | O | 3 credits | 6P | N. Kobert, A. de Mello, M. H. Schroth, B. Wehrli | |
Abstract | This practical course provides an introduction to elementary laboratory techniques. The experiments cover a wide range of techniques, including analytical and synthetic techniques (e. g. investigation of soil and water samples or the preparation of simple compunds). Furthermore, the handling of gaseous substances is practised. | |||||
Learning objective | This course is intended to provide an overview of experimental chemical methods. The handling of chemicals and proper laboratory techniques represent the main learning targets. Furthermore, the description and recording of laboratory processes is an essential part of this course. | |||||
Content | The classification and analysis of natural and artificial compounds is a key subject of this course. It provides an introduction to elementary laboratory techniques, and the experiments cover a wide range of analytic and synthetic tasks: Selected samples (e.g. soil and water) will be analysed with various methods, such as titrations, spectroscopy or ion chromatography. The chemistry of aqeous solutions (acid-base equilibria and solvatation or precipitation processes) is studied. The synthesis of simple inorganic complexes or organic molecules is practised. Furthermore, the preparation and handling of environmentally relevant gaseous species like carbon dioxide or nitrogen oxides is a central subject of the Praktikum. | |||||
Lecture notes | The script will be published on the web. Details will be provided on the first day of the semester. | |||||
Literature | A thorough study of all script materials is requested before the course starts. | |||||
3. Semester | ||||||
Basic Courses II | ||||||
Examination Block 1 | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
402-0063-00L | Physics II | O | 5 credits | 3V + 1U | A. Refregier | |
Abstract | Introduction to the concepts and tools in Physics, with the help of demonstration experiments. The Chapters treated are Electromagnetism, Refraction and Diffraction of Waves, Elements of Quantum Mechanics with applications to Spectroscopy, Thermodynamics, Phase Transitions, Transport Phenomena. Whenever possible, examples relevant to the students' main field of study are given. | |||||
Learning objective | Introduction to the scientific methodology. The student should develop his/her capability to turn physical observations into mathematical models, and to solve them. | |||||
Lecture notes | A script will be distributed | |||||
Literature | Friedhelm Kuypers Physik für Ingenieure und Naturwissenschaftler Band 2 Elektrizität, Optik, Wellen Wiley-VCH, 2012 ISBN 3527411445, 9783527411443 Douglas C. Giancoli Physik 3. erweiterte Auflage Pearson Studium Hans J. Paus Physik in Experimenten und Beispielen Carl Hanser Verlag, München, 2002, 1068 S. Paul A. Tipler Physik Spektrum Akademischer Verlag, 1998, 1522 S., ca Fr. 120.- David Halliday Robert Resnick Jearl Walker Physik Wiley-VCH, 2003, 1388 S., Fr. 87.- (bis 31.12.03) dazu gratis Online Ressourcen (z.B. Simulationen): www.halliday.de | |||||
701-0071-00L | Mathematics III: Systems Analysis | O | 4 credits | 2V + 1U | N. Gruber, M. Vogt | |
Abstract | The objective of the systems analysis course is to deepen and illustrate the mathematical concepts on the basis of a series of very concrete examples. Topics covered include: linear box models with one or several variables, non-linear box models with one or several variables, time-discrete models, and continuous models in time and space. | |||||
Learning objective | Learning and applying of concepts (models) and quantitative methods to address concrete problems of environmental relevance. Understanding and applying the systems-analytic approach, i.e., Recognizing the core of the problem - simplification - quantitative approach - prediction. | |||||
Content | http://www.up.ethz.ch/education/systems-analysis.html | |||||
Lecture notes | Overhead slides will be made available through Ilias. | |||||
Literature | Imboden, D.S. and S. Pfenninger (2013) Introduction to Systems Analysis: Mathematically Modeling Natural Systems. Berlin Heidelberg: Springer Verlag. http://link.springer.com/book/10.1007%2F978-3-642-30639-6 | |||||
752-4001-00L | Microbiology | O | 2 credits | 2V | M. Ackermann, M. Schuppler, J. Vorholt-Zambelli | |
Abstract | Teaching of basic knowledge in microbiology with main focus on Microbial Cell Structure and Function, Molecular Genetics, Microbial Growth, Metabolic Diversity, Phylogeny and Taxonomy, Prokaryotic Diversity, Human-Microbe Interactions, Biotechnology. | |||||
Learning objective | Teaching of basic knowledge in microbiology. | |||||
Content | Der Schwerpunkt liegt auf den Themen: Bakterielle Zellbiologie, Molekulare Genetik, Wachstumsphysiologie, Biochemische Diversität, Phylogenie und Taxonomie, Prokaryotische Vielfalt, Interaktion zwischen Menschen und Mikroorganismen sowie Biotechnologie. | |||||
Lecture notes | Wird von den jeweiligen Dozenten ausgegeben. | |||||
Literature | Die Behandlung der Themen erfolgt auf der Basis des Lehrbuchs Brock, Biology of Microorganisms | |||||
752-0100-00L | Biochemistry | O | 2 credits | 2V | C. Frei | |
Abstract | Basic knowledge of enzymology, in particular the structure, kinetics and chemistry of enzyme-catalysed reaction in vitro and in vivo. Biochemistry of metabolism: Those completing the course are able to describe and understand fundamental cellular metabolic processes. | |||||
Learning objective | Students are able to understand - the structure and function of biological macromolecules - the kinetic bases of enzyme reactions - thermodynamic and mechanistic basics of relevant metabolic processes Students are able to describe the relevant metabolic reactions in detail | |||||
Content | Program Introduction, basics, composition of cells, biochemical units, repetition of relevant organic chemistry Structure and function of proteins Carbohydrates Lipids an biological membranes Enzymes and enzyme kinetics Catalytic strategies Metabolism: Basic concepts and design. Repetition of basic thermodynamics Glycolysis, fermentation The citric acid cycle Oxidative phosphorylation Fatty acid metabolism | |||||
Lecture notes | Horton et al. (Pearson) serves as lecture notes. | |||||
Prerequisites / Notice | Basic knowledge in biology and chemistry is a prerequisite. | |||||
752-6305-00L | Physiology and Anatomy I | O | 2 credits | 2V | D. Burdakov | |
Abstract | Imparts a basic understanding of physiology and anatomy in man, focusing on the interrelations between morphology and function of the human organism. This is fostered by discussing all subjects from a functional point of view. One major topic of the lecture is food intake and digestion with its correlated chemosensory, endocrine and metabolic processes. | |||||
Learning objective | At the end of the course the students understand the basic functions of the organ systems and functionally important morphological features. One focus of the course is on aspects related to nutrition and overweight including the resulting diseases. | |||||
701-0225-00L | Organic Chemistry | O | 2 credits | 2V | K. McNeill | |
Abstract | Basics of Organic Chemistry. Reaction mechanisms in organic chemistry (substitutions, additions, eliminations, condensations, electrophilic aromatic substitution and NMR spectroscopy) | |||||
Learning objective | The students know the basic reaction mechanisms in organic chemistry. They are able to understand and formulate simple organic reactions. | |||||
Content | Descriptive chemistry of functional groups (alkyl halides, alkenes, aromatic systems, carbonyls). Reaction mechanisms (substitutions, additions, eliminations, condensations, electrophilic aromatic substitution). NMR spectroscopy. | |||||
Literature | Carsten Schmuck, Basisbuch Organische Chemie, Pearson | |||||
Prerequisites / Notice | Der Stoff der Basischemie wird vorausgesetzt. | |||||
Examination Block 2 | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
401-0624-00L | Mathematics IV: Statistics | O | 4 credits | 2V + 1U | J. Ernest | |
Abstract | Introduction to basic methods and fundamental concepts of statistics and probability theory for practicioners in natural sciences.The concepts are illustrated with some real data examples. The lecture will be held in german. | |||||
Learning objective | Capacity to learn from data; good practice when dealing with data and recognizing possible fraud in statistics; basic konwoledge about the laws of randomness and stochastic thinking (thinking in probabilities); apply simple methods in inferential statistics (e.g., several hypothesis tests will be introduced). The lecture will be held in german. | |||||
Content | Beschreibende Statistik (einschliesslich graphischer Methoden). Einführung in die Wahrscheinlichkeitsrechnung (Grundregeln, Zufallsvariable, diskrete und stetige Verteilungen, Ausblick auf Grenzwertsätze). Methoden der Analytischen Statistik: Schätzungen, Tests (einschliesslich Vorzeichentest, t-Test, F-Test, Wilcoxon-Test), Vertrauensintervalle, Prognoseintervalle, Korrelation, einfache und multiple Regression. | |||||
Lecture notes | Kurzes Skript zur Vorlesung ist erhältlich. | |||||
Literature | Stahel, W.: Statistische Datenanalyse. Vieweg 1995, 3. Auflage 2000 (als ergänzende Lektüre) | |||||
Prerequisites / Notice | Die Übungen (ca. die Hälfte der Kontaktstunden; einschliesslich Computerübungen) sind ein wichtiger Bestandteil der Lehrveranstaltung. Voraussetzungen: Mathematik I, II | |||||
751-1311-00L | Introduction to Agricultural Management | O | 2 credits | 2V | R. Finger | |
Abstract | Vermittlung von betriebswirtschaftlichen Grundlagenwissen und Analyse- und Planungsinstrumenten mit Anwendung auf Unternehmen der Agrar- und Ernährungswirtschaft | |||||
Learning objective | Teilnehmer des Kurses sollen am Ende der Vorlesung i) grundlegende Unternehmensentscheide strukturieren und analysieren können, ii) verschiedene Analyse- und Planungsinstrumente auf Fragestellungen der Produktionsplanung, Investition und Finanzierung an Beispielen anwenden zu können, iii) verschiedene Werkzeuge zur unternehmerischen Entscheidungsunterstützung anwenden können und iv) die Spezifika von Unternehmen in der Agrar- und Ernährungswirtschaft kennen. | |||||
Content | Die Vorlesung geht auf folgende Inhalte, mit spezifischen Anwendungen im Agrar- und Ernährungssektors ein: Grundlagen und Ziele unternehmerischen Entscheidens Kosten und Leistungsrechnung Produktionstheorie Produktionsprogrammplanung Investitionsplanung und Finanzierung Entscheidungen unter Unsicherheit und Risikomanagement | |||||
Lecture notes | Vorlesungsunterlagen werden im Laufe des Semesters zur Verfügung gestellt | |||||
Literature | Oliver Musshoff und Norbert Hirschauer (2013). Modernes Agrarmanagement: Betriebswirtschaftliche Analyse- und Planungsverfahren. 3. Auflage. Vahlen, ISBN-10: 3800647435 | |||||
Additional Courses | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
402-0000-02L | Laboratory Course in Physics for Students in Food Sciences | O | 2 credits | 4P | A. Biland, M. Doebeli | |
Abstract | The central aim is to provide an individual experience of the physical phenomena and the basic principles of the experiment. By conducting simple physical experiments the student will learn how to properly use physical instruments and how to evaluate the results correctly. | |||||
Learning objective | This laboratory course aims to provide basic knowledge of - the setup of a physics experiment, - the use of measurement instruments, - various measuring techniques, - the analysis or measurement errors, - and the interpretation of the measured quantities. | |||||
Content | Fehlerrechnung, 9 ausgewählte Versuche zu folgenden Themen: Transversalschwingung einer Saite, Mechanische Resonanz, Innere Reibung in Flüssigkeiten, Absoluter Nullpunkt der Temperaturskala, Universelle Gaskonstante, Spezifische Verdampfungswärme, Spezifische Wärme, Interferenz und Beugung, Drehung der Polarisationsebene, Spektrale Absorption, Energieverteilung im Spektrum, Spektroskopie, Leitfähigkeit eines Elektrolyten, Elektrische Leitfähigkeit und Wärmeleitfähigkeit, Radioaktivität, Radioaktive Innenluft, Dichte und Leitfähigkeit, Fluss durch ein poröses Medium, Lärm. Die Auswahl der Versuche kann zwischen den verschiedenen Studiengängen variieren. | |||||
Lecture notes | Anleitungen zum Physikalischen Praktikum | |||||
Prerequisites / Notice | The signed form https://ap.phys.ethz.ch/Regeln.pdf needs to be brought to all experiments. | |||||
752-4003-00L | Practical Course in Microbiology | O | 2 credits | 3P | M. Künzler | |
Abstract | Basic principles of the handling of microorganisms (MO) - Detection of MO in the environment - Foodmicrobiology - Morphology and diagnostics of MO - Morphology and physiology of fungi - Antimicrobial agents - Microbial genetics - Bacterial physiology and interactions - Microbial pest control | |||||
Learning objective | The students are familiar with the laboratory work with microorganisms. Specific emphasis is put on the isolation and maintenance of pure cultures and the required hygiene measures. The students know the practical, clinical and ecological importance of microorganisms. | |||||
Content | In an introductory part students are made familiar with the handling and cultivation of microorganisms (MO). Afterwards, the students detect MO in the environment and use MO for the conservation of food. This part is then followed by a practical introduction on routine diagnostics of MO and experiments with antimicrobial agents. The part on diagnostics is complemented by an overview over the morphology and physiology of fungi. On simple experiments, the students experience the interaction of of MO with higher organisms - the common topic of all research groups at the Institute of Microbiology. Some simple experiments demonstrate the importance of MO in molecular genetics. The course ends with an example of applied microbiology i.e. an experiment on microbial pest control. | |||||
Lecture notes | A detailled script of approx. 100 pp. and other relevant documents are available at Moodle at latest 1 week before the beginning of the practical course. | |||||
Literature | Recommended literature (facultative): -Allgemeine Mikrobiologie by Georg Fuchs and Hans G. Schlegel, Thieme-Verlag, 9. Auflage 2014 -Taschenlehrbuch Biologie: Mikrobiologie by Katharina Munk, Thieme Verlag, 2008 -Brock Mikrobiologie kompakt von Michael T. Madigan, John M. Martinko, David A. Stahl and David P. Clark, Pearson Verlag, 13. Auflage 2015 | |||||
Prerequisites / Notice | Performance of the students in this practical course is controlled by: 1. Attendance of all 8 course days 2. Handing in of written reports to selected experiments (in groups of 2 students) 3. Preparation of a poster to a selected topic of Microbiology (in groups of 4 students) Participating doctoral students who collect credit points during their thesis are examined in a 30-minute oral exam at the end of the course. |
- Page 1 of 3 All