Search result: Catalogue data in Autumn Semester 2017

Computer Science Master Information
Focus Courses
Focus Courses General Studies
Core Focus Courses General Studies
NumberTitleTypeECTSHoursLecturers
252-0237-00LConcepts of Object-Oriented Programming Information W6 credits3V + 2UP. Müller
AbstractCourse that focuses on an in-depth understanding of object-oriented programming and compares designs of object-oriented programming languages. Topics include different flavors of type systems, inheritance models, encapsulation in the presence of aliasing, object and class initialization, program correctness, reflection
Learning objectiveAfter this course, students will:
Have a deep understanding of advanced concepts of object-oriented programming and their support through various language features. Be able to understand language concepts on a semantic level and be able to compare and evaluate language designs.
Be able to learn new languages more rapidly.
Be aware of many subtle problems of object-oriented programming and know how to avoid them.
ContentThe main goal of this course is to convey a deep understanding of the key concepts of sequential object-oriented programming and their support in different programming languages. This is achieved by studying how important challenges are addressed through language features and programming idioms. In particular, the course discusses alternative language designs by contrasting solutions in languages such as C++, C#, Eiffel, Java, Python, and Scala. The course also introduces novel ideas from research languages that may influence the design of future mainstream languages.

The topics discussed in the course include among others:
The pros and cons of different flavors of type systems (for instance, static vs. dynamic typing, nominal vs. structural, syntactic vs. behavioral typing)
The key problems of single and multiple inheritance and how different languages address them
Generic type systems, in particular, Java generics, C# generics, and C++ templates
The situations in which object-oriented programming does not provide encapsulation, and how to avoid them
The pitfalls of object initialization, exemplified by a research type system that prevents null pointer dereferencing
How to maintain the consistency of data structures
LiteratureWill be announced in the lecture.
Prerequisites / NoticePrerequisites:
Mastering at least one object-oriented programming language (this course will NOT provide an introduction to object-oriented programming); programming experience
252-0417-00LRandomized Algorithms and Probabilistic MethodsW8 credits3V + 2U + 2AA. Steger, E. Welzl
AbstractLas Vegas & Monte Carlo algorithms; inequalities of Markov, Chebyshev, Chernoff; negative correlation; Markov chains: convergence, rapidly mixing; generating functions; Examples include: min cut, median, balls and bins, routing in hypercubes, 3SAT, card shuffling, random walks
Learning objectiveAfter this course students will know fundamental techniques from probabilistic combinatorics for designing randomized algorithms and will be able to apply them to solve typical problems in these areas.
ContentRandomized Algorithms are algorithms that "flip coins" to take certain decisions. This concept extends the classical model of deterministic algorithms and has become very popular and useful within the last twenty years. In many cases, randomized algorithms are faster, simpler or just more elegant than deterministic ones. In the course, we will discuss basic principles and techniques and derive from them a number of randomized methods for problems in different areas.
Lecture notesYes.
Literature- Randomized Algorithms, Rajeev Motwani and Prabhakar Raghavan, Cambridge University Press (1995)
- Probability and Computing, Michael Mitzenmacher and Eli Upfal, Cambridge University Press (2005)
252-0463-00LSecurity Engineering Information W5 credits2V + 2UD. Basin
AbstractSubject of the class are engineering techniques for developing secure systems. We examine concepts, methods and tools, applied within the different activities of the SW development process to improve security of the system. Topics: security requirements&risk analysis, system modeling&model-based development methods, implementation-level security, and evaluation criteria for secure systems
Learning objectiveSecurity engineering is an evolving discipline that unifies two important areas: software engineering and security. Software Engineering addresses the development and application of methods for systematically developing, operating, and maintaining, complex, high-quality software.
Security, on the other hand, is concerned with assuring and verifying properties of a system that relate to confidentiality, integrity, and availability of data.

The goal of this class is to survey engineering techniques for developing secure systems. We will examine concepts, methods, and tools that can be applied within the different activities of the software development process, in order to improve the security of the resulting systems.

Topics covered include

* security requirements & risk analysis,
* system modeling and model-based development methods,
* implementation-level security, and
* evaluation criteria for the development of secure systems
ContentSecurity engineering is an evolving discipline that unifies two important areas: software engineering and security. Software Engineering addresses the development and application of methods for systematically developing, operating, and maintaining, complex, high-quality software.
Security, on the other hand, is concerned with assuring and verifying properties of a system that relate to confidentiality, integrity, and availability of data.

The goal of this class is to survey engineering techniques for developing secure systems. We will examine concepts, methods, and tools that can be applied within the different activities of the software development process, in order to improve the security of the resulting systems.

Topics covered include

* security requirements & risk analysis,
* system modeling and model-based development methods,
* implementation-level security, and
* evaluation criteria for the development of secure systems

Modules taught:

1. Introduction
- Introduction of Infsec group and speakers
- Security meets SW engineering: an introduction
- The activities of SW engineering, and where security fits in
- Overview of this class
2. Requirements Engineering: Security Requirements and some Analysis
- overview: functional and non-functional requirements
- use cases, misuse cases, sequence diagrams
- safety and security
- FMEA, FTA, attack trees
3. Modeling in the design activities
- structure, behavior, and data flow
- class diagrams, statecharts
4. Model-driven security for access control (design)
- SecureUML as a language for access control
- Combining Design Modeling Languages with SecureUML
- Semantics, i.e., what does it all mean,
- Generation
- Examples and experience
5. Model-driven security (Part II)
- Continuation of above topics
6. Security patterns (design and implementation)
7. Implementation-level security
- Buffer overflows
- Input checking
- Injection attacks
8. Testing
- overview
- model-based testing
- testing security properties
9. Risk analysis and management 1 (project management)
- "risk": assets, threats, vulnerabilities, risk
- risk assessment: quantitative and qualitative
- safeguards
- generic risk analysis procedure
- The OCTAVE approach
10. Risk analysis: IT baseline protection
- Overview
- Example
11. Evaluation criteria
- CMMI
- systems security engineering CMM
- common criteria
12. Guest lecture
- TBA
Literature- Ross Anderson: Security Engineering, Wiley, 2001.
- Matt Bishop: Computer Security, Pearson Education, 2003.
- Ian Sommerville: Software Engineering, 6th ed., Addison-Wesley, 2001.
- John Viega, Gary McGraw: Building Secure Software, Addison-Wesley, 2002.
- Further relevant books and journal/conference articles will be announced in the lecture.
Prerequisites / NoticePrerequisite: Class on Information Security
252-0535-00LMachine Learning Information W8 credits3V + 2U + 2AJ. M. Buhmann
AbstractMachine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.
Learning objectiveStudents will be familiarized with the most important concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensible to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. A machine learning project will provide an opportunity to test the machine learning algorithms on real world data.
ContentThe theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:

- Bayesian theory of optimal decisions
- Maximum likelihood and Bayesian parameter inference
- Classification with discriminant functions: Perceptrons, Fisher's LDA and support vector machines (SVM)
- Ensemble methods: Bagging and Boosting
- Regression: least squares, ridge and LASSO penalization, non-linear regression and the bias-variance trade-off
- Non parametric density estimation: Parzen windows, nearest nieghbour
- Dimension reduction: principal component analysis (PCA) and beyond
Lecture notesNo lecture notes, but slides will be made available on the course webpage.
LiteratureC. Bishop. Pattern Recognition and Machine Learning. Springer 2007.

R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley &
Sons, second edition, 2001.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference and Prediction. Springer, 2001.

L. Wasserman. All of Statistics: A Concise Course in Statistical
Inference. Springer, 2004.
Prerequisites / NoticeThe course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments.
Students should at least have followed one previous course offered by the Machine Learning Institute (e.g., CIL or LIS) or an equivalent course offered by another institution.
252-1414-00LSystem Security Information W5 credits2V + 2US. Capkun, A. Perrig
AbstractThe first part of the lecture covers individual system aspects starting with tamperproof or tamper-resistant hardware in general over operating system related security mechanisms to application software systems, such as host based intrusion detection systems. In the second part, the focus is on system design and methodologies for building secure systems.
Learning objectiveIn this lecture, students learn about the security requirements and capabilities that are expected from modern hardware, operating systems, and other software environments. An overview of available technologies, algorithms and standards is given, with which these requirements can be met.
ContentThe first part of the lecture covers individual system's aspects starting with tamperproof or tamperresistant hardware in general over operating system related security mechanisms to application software systems such as host based intrusion detetction systems. The main topics covered are: tamper resistant hardware, CPU support for security, protection mechanisms in the kernel, file system security (permissions / ACLs / network filesystem issues), IPC Security, mechanisms in more modern OS, such as Capabilities and Zones, Libraries and Software tools for security assurance, etc.

In the second part, the focus is on system design and methodologies for building secure systems. Topics include: patch management, common software faults (buffer overflows, etc.), writing secure software (design, architecture, QA, testing), compiler-supported security, language-supported security, logging and auditing (BSM audit, dtrace, ...), cryptographic support, and trustworthy computing (TCG, SGX).

Along the lectures, model cases will be elaborated and evaluated in the exercises.
263-2800-00LDesign of Parallel and High-Performance Computing Information W7 credits3V + 2U + 1AT. Hoefler, M. Püschel
AbstractAdvanced topics in parallel / concurrent programming.
Learning objectiveUnderstand concurrency paradigms and models from a higher perspective and acquire skills for designing, structuring and developing possibly large concurrent software systems. Become able to distinguish parallelism in problem space and in machine space. Become familiar with important technical concepts and with concurrency folklore.
263-3800-00LAdvanced Operating Systems Information W6 credits2V + 2U + 1AT. Roscoe
AbstractThis course is intended to give students a thorough understanding of design and implementation issues for modern operating systems, with a particular emphasis on the challenges of modern hardware features. We will cover key design issues in implementing an operating system, such as memory management, scheduling, protection, inter-process communication, device drivers, and file systems.
Learning objectiveThe goals of the course are, firstly, to give students:

1. A broader perspective on OS design than that provided by knowledge of Unix or Windows, building on the material in a standard undergraduate operating systems class

2. Practical experience in dealing directly with the concurrency, resource management, and abstraction problems confronting OS designers and implementers

3. A glimpse into future directions for the evolution of OS and computer hardware design
ContentThe course is based on practical implementation work, in C and assembly language, and requires solid knowledge of both. The work is mostly carried out in teams of 3-4, using real hardware, and is a mixture of team milestones and individual projects which fit together into a complete system at the end. Emphasis is also placed on a final report which details the complete finished artifact, evaluates its performance, and discusses the choices the team made while building it.
Prerequisites / NoticeThe course is based around a milestone-oriented project, where students work in small groups to implement major components of a microkernel-based operating system. The final assessment will be a combination grades awarded for milestones during the course of the project, a final written report on the work, and a set of test cases run on the final code.
263-4640-00LNetwork Security Information W6 credits2V + 1U + 2AA. Perrig, S. Frei
AbstractSome of today's most damaging attacks on computer systems involve
exploitation of network infrastructure, either as the target of attack
or as a vehicle to attack end systems. This course provides an
in-depth study of network attack techniques and methods to defend
against them.
Learning objective- Students are familiar with fundamental network security concepts.
- Students can assess current threats that Internet services and networked devices face, and can evaluate appropriate countermeasures.
- Students can identify and assess known vulnerabilities in a software system that is connected to the Internet (through analysis and penetration testing tools).
- Students have an in-depth understanding of a range of important security technologies.
- Students learn how formal analysis techniques can help in the design of secure networked systems.
ContentThe course will cover topics spanning five broad themes: (1) network
defense mechanisms such as secure routing protocols, TLS, anonymous
communication systems, network intrusion detection systems, and
public-key infrastructures; (2) network attacks such as denial of
service (DoS) and distributed denial-of-service (DDoS) attacks; (3)
analysis and inference topics such as network forensics and attack
economics; (4) formal analysis techniques for verifying the security
properties of network architectures; and (5) new technologies related
to next-generation networks.
Prerequisites / NoticeThis lecture is intended for students with an interest in securing
Internet communication services and network devices. Students are
assumed to have knowledge in networking as taught in a Communication
Networks lecture. The course will involve a course project and some
smaller programming projects as part of the homework. Students are
expected to have basic knowledge in network programming in a
programming language such as C/C++, Go, or Python.
263-5902-00LComputer Vision Information W6 credits3V + 1U + 1AL. Van Gool, V. Ferrari, A. Geiger
AbstractThe goal of this course is to provide students with a good understanding of computer vision and image analysis techniques. The main concepts and techniques will be studied in depth and practical algorithms and approaches will be discussed and explored through the exercises.
Learning objectiveThe objectives of this course are:
1. To introduce the fundamental problems of computer vision.
2. To introduce the main concepts and techniques used to solve those.
3. To enable participants to implement solutions for reasonably complex problems.
4. To enable participants to make sense of the computer vision literature.
ContentCamera models and calibration, invariant features, Multiple-view geometry, Model fitting, Stereo Matching, Segmentation, 2D Shape matching, Shape from Silhouettes, Optical flow, Structure from motion, Tracking, Object recognition, Object category recognition
Prerequisites / NoticeIt is recommended that students have taken the Visual Computing lecture or a similar course introducing basic image processing concepts before taking this course.
636-0007-00LComputational Systems Biology Information W6 credits3V + 2UJ. Stelling
AbstractStudy of fundamental concepts, models and computational methods for the analysis of complex biological networks. Topics: Systems approaches in biology, biology and reaction network fundamentals, modeling and simulation approaches (topological, probabilistic, stoichiometric, qualitative, linear / nonlinear ODEs, stochastic), and systems analysis (complexity reduction, stability, identification).
Learning objectiveThe aim of this course is to provide an introductory overview of mathematical and computational methods for the modeling, simulation and analysis of biological networks.
ContentBiology has witnessed an unprecedented increase in experimental data and, correspondingly, an increased need for computational methods to analyze this data. The explosion of sequenced genomes, and subsequently, of bioinformatics methods for the storage, analysis and comparison of genetic sequences provides a prominent example. Recently, however, an additional area of research, captured by the label "Systems Biology", focuses on how networks, which are more than the mere sum of their parts' properties, establish biological functions. This is essentially a task of reverse engineering. The aim of this course is to provide an introductory overview of corresponding computational methods for the modeling, simulation and analysis of biological networks. We will start with an introduction into the basic units, functions and design principles that are relevant for biology at the level of individual cells. Making extensive use of example systems, the course will then focus on methods and algorithms that allow for the investigation of biological networks with increasing detail. These include (i) graph theoretical approaches for revealing large-scale network organization, (ii) probabilistic (Bayesian) network representations, (iii) structural network analysis based on reaction stoichiometries, (iv) qualitative methods for dynamic modeling and simulation (Boolean and piece-wise linear approaches), (v) mechanistic modeling using ordinary differential equations (ODEs) and finally (vi) stochastic simulation methods.
Lecture notesLink
LiteratureU. Alon, An introduction to systems biology. Chapman & Hall / CRC, 2006.

Z. Szallasi et al. (eds.), System modeling in cellular biology. MIT Press, 2006.
Focus Elective Courses General Studies
NumberTitleTypeECTSHoursLecturers
252-0286-00LSystem Construction Information W4 credits2V + 1UF. Friedrich Wicker
AbstractMain goal is teaching knowledge and skills needed for building custom operating systems and runtime environments. Relevant topics are studied at the example of sufficiently simple systems that have been built at our Institute in the past, ranging from purpose-oriented single processor real-time systems up to generic system kernels on multi-core hardware.
Learning objectiveThe lecture's main goal is teaching of knowledge and skills needed for building custom operating systems and runtime environments.

The lecture intends to supplement more abstract views of software construction, and to contribute to a better understanding of "how it really works" behind the scenes.
ContentCase Study 1: Embedded System
- Safety-critical and fault-tolerant monitoring system
- Based on an auto-pilot system for helicopters

Case Study 2: Multi-Processor Operating System
- Universal operating system for symmetric multiprocessors
- Shared memory approach
- Based on Language-/System Codesign (Active Oberon / A2)

Case Study 3: Custom designed Single-Processor System
- RISC Single-processor system designed from scratch
- Hardware on FPGA
- Graphical workstation OS and compiler (Project Oberon)

Case Study 4: Custom-designed Multi-Processor System
- Special purpose heterogeneous system on a chip
- Masssively parallel hard- and software architecture based on message passing
- Focus: dataflow based applications
Lecture notesPrinted lecture notes will be delivered during the lecture. Slides will also be available from the lecture homepage.
252-0373-00LMobile and Personal Information Systems Information
The course will be offered for the last time.
W4 credits2V + 1UM. Norrie
AbstractThe course examines how traditional information system architectures and technologies have been adapted to support various forms of mobile and personal information systems. Topics to be covered include: databases of mobile objects; context-aware services; opportunistic information sharing; ambient information; pervasive display systems.
Learning objectiveStudents will be introduced to a variety of novel information services and architectures developed for mobile environments in order to gain insight into the requirements and processes involved in designing and developing such systems and learning to think beyond traditional information systems.
ContentAdvances in mobile devices and communication technologies have led to a rapid increase in demands for various forms of mobile information systems where the users, the applications and the databases themselves may be mobile. Based on both lectures and breakout sessions, this course examines the impact of the different forms of mobility and collaboration that systems require nowadays and how these influence the design of systems at the database, the application and the user interface level. For example, traditional data management techniques have to be adapted to meet the requirements of such systems and cope with new connection, access and synchronisation issues. As mobile devices have increasingly become integrated into the users' lives and are expected to support a range of activities in different environments, applications should be context-aware, adapting functionality, information delivery and the user interfaces to the current environment and task. Various forms of software and hardware sensors may be used to determine the current context, raising interesting issues for discussion. Finally, user mobility, and the varying and intermittent connectivity that it implies, gives rise to new forms of dynamic collaboration that require lightweight, but flexible, mechanisms for information synchronisation and consistency maintenance. Here, the interplay of mobile, personal and social context will receive special attention.
252-0437-00LDistributed Algorithms Information W4 credits3VF. Mattern
AbstractModels of distributed computations, time space diagrams, virtual time, logical clocks and causality, wave algorithms, parallel and distributed graph traversal, consistent snapshots, mutual exclusion, election and symmetry breaking, distributed termination detection, garbage collection in distributed systems, monitoring distributed systems, global predicates.
Learning objectiveBecome acquainted with models and algorithms for distributed systems.
ContentVerteilte Algorithmen sind Verfahren, die dadurch charakterisiert sind, dass mehrere autonome Prozesse gleichzeitig Teile eines gemeinsamen Problems in kooperativer Weise bearbeiten und der dabei erforderliche Informationsaustausch ausschliesslich über Nachrichten erfolgt. Derartige Algorithmen kommen im Rahmen verteilter Systeme zum Einsatz, bei denen kein gemeinsamer Speicher existiert und die Übertragungszeit von Nachrichten i.a. nicht vernachlässigt werden kann. Da dabei kein Prozess eine aktuelle konsistente Sicht des globalen Zustands besitzt, führt dies zu interessanten Problemen.
Im einzelnen werden u.a. folgende Themen behandelt:
Modelle verteilter Berechnungen; Raum-Zeit Diagramme; Virtuelle Zeit; Logische Uhren und Kausalität; Wellenalgorithmen; Verteilte und parallele Graphtraversierung; Berechnung konsistenter Schnappschüsse; Wechselseitiger Ausschluss; Election und Symmetriebrechung; Verteilte Terminierung; Garbage-Collection in verteilten Systemen; Beobachten verteilter Systeme; Berechnung globaler Prädikate.
Literature- F. Mattern: Verteilte Basisalgorithmen, Springer-Verlag
- G. Tel: Topics in Distributed Algorithms, Cambridge University Press
- G. Tel: Introduction to Distributed Algorithms, Cambridge University Press, 2nd edition
- A.D. Kshemkalyani, M. Singhal: Distributed Computing, Cambridge University Press
- N. Lynch: Distributed Algorithms, Morgan Kaufmann Publ
252-0543-01LComputer Graphics Information W6 credits3V + 2UM. Gross, J. Novak
AbstractThis course covers some of the fundamental concepts of computer graphics, namely 3D object representations and generation of photorealistic images from digital representations of 3D scenes.
Learning objectiveAt the end of the course the students will be able to build a rendering system. The students will study the basic principles of rendering and image synthesis. In addition, the course is intended to stimulate the students' curiosity to explore the field of computer graphics in subsequent courses or on their own.
ContentThis course covers fundamental concepts of modern computer graphics. Students will learn about 3D object representations and the details of how to generate photorealistic images from digital representations of 3D scenes. Starting with an introduction to 3D shape modeling and representation, texture mapping and ray-tracing, we will move on to acceleration structures, the physics of light transport, appearance modeling and global illumination principles and algorithms. We will end with an overview of modern image-based image synthesis techniques, covering topics such as lightfields and depth-image based rendering.
Lecture notesno
Prerequisites / NoticePrerequisites:
Fundamentals of calculus and linear algebra, basic concepts of algorithms and data structures, programming skills in C++, Visual Computing course recommended.
The programming assignments will be in C++. This will not be taught in the class.
252-0546-00LPhysically-Based Simulation in Computer Graphics Information W4 credits2V + 1UM. Bächer, V. da Costa de Azevedo
AbstractThis lecture provides an introduction to physically-based animation in computer graphics and gives an overview of fundamental methods and algorithms. The practical exercises include three assignments which are to be solved in small groups. In an addtional course project, topics from the lecture will be implemented into a 3D game or a comparable application.
Learning objectiveThis lecture provides an introduction to physically-based animation in computer graphics and gives an overview of fundamental methods and algorithms. The practical exercises include three assignments which are to be solved in small groups. In an addtional course project, topics from the lecture will be implemented into a 3D game or a comparable application.
ContentThe lecture covers topics in physically-based modeling,
such as particle systems, mass-spring models, finite difference and finite element methods. These approaches are used to represent and simulate deformable objects or fluids with applications in animated movies, 3D games and medical systems. Furthermore, the lecture covers topics such as rigid body dynamics, collision detection, and character animation.
Prerequisites / NoticeFundamentals of calculus and physics, basic concepts of algorithms and data structures, basic programming skills in C++. Knowledge on numerical mathematics as well as ordinary and partial differential equations is an asset, but not required.
252-0811-00LApplied Security Laboratory Information
In the Master Programme max. 10 credits can be accounted by Labs on top of the Interfocus Courses. Additional Labs will be listed on the Addendum.
W8 credits7PD. Basin
AbstractHands-on course on applied aspects of information security. Applied
information security, operating system security, OS hardening, computer forensics, web application security, project work, design, implementation, and configuration of security mechanisms, risk analysis, system review.
Learning objectiveThe Applied Security Laboratory addresses four major topics: operating system security (hardening, vulnerability scanning, access control, logging), application security with an emphasis on web applications (web server setup, common web exploits, authentication, session handling, code security), computer forensics, and risk analysis and risk management.
ContentThis course emphasizes applied aspects of Information Security. The students will study a number of topics in a hands-on fashion and carry out experiments in order to better understand the need for secure implementation and configuration of IT systems and to assess the effectivity and impact of security measures. This part is based on a book and virtual machines that include example applications, questions, and answers.

The students will also complete an independent project: based on a set of functional requirements, they will design and implement a prototypical IT system. In addition, they will conduct a thorough security analysis and devise appropriate security measures for their systems. Finally, they will carry out a technical and conceptual review of another system. All project work will be performed in teams and must be properly documented.
Lecture notesThe course is based on the book "Applied Information Security - A Hands-on Approach". More information: http://www.infsec.ethz.ch/appliedlabbook
LiteratureRecommended reading includes:
* Pfleeger, Pfleeger: Security in Computing, Third Edition, Prentice Hall, available online from within ETH
* Garfinkel, Schwartz, Spafford: Practical Unix & Internet Security, O'Reilly & Associates.
* Various: OWASP Guide to Building Secure Web Applications, available online
* Huseby: Innocent Code -- A Security Wake-Up Call for Web Programmers, John Wiley & Sons.
* Scambray, Schema: Hacking Exposed Web Applications, McGraw-Hill.
* O'Reilly, Loukides: Unix Power Tools, O'Reilly & Associates.
* Frisch: Essential System Administration, O'Reilly & Associates.
* NIST: Risk Management Guide for Information Technology Systems, available online as PDF
* BSI: IT-Grundschutzhandbuch, available online
Prerequisites / Notice* The lab allows flexible working since there are only few mandatory meetings during the semester.
* The lab covers a variety of different techniques. Thus, participating students should have a solid foundation in the following areas: information security, operating system administration (especially Unix/Linux), and networking. Students are also expected to have a basic understanding of HTML, PHP, JavaScript, and MySQL because several examples are implemented in these languages.
* Students must be prepared to spend more than three hours per week to complete the lab assignments and the project. This applies particularly to students who do not meet the recommended requirements given above. Successful participants of the course receive 8 credits as compensation for their effort.
* All participants must sign the lab's charter and usage policy during the introduction lecture.
252-0817-00LDistributed Systems Laboratory Information
In the Master Programme max.10 credits can be accounted by Labs on top of the Interfocus Courses. These Labs will only count towards the Master Programme. Additional Labs will be listed on the Addendum.
W10 credits9PG. Alonso, T. Hoefler, F. Mattern, T. Roscoe, A. Singla, R. Wattenhofer, C. Zhang
AbstractThis course involves the participation in a substantial development and/or evaluation project involving distributed systems technology. There are projects available in a wide range of areas: from web services to ubiquitous computing including wireless networks, ad-hoc networks, RFID, and distributed applications on smartphones.
Learning objectiveGain hands-on-experience with real products and the latest technology in distributed systems.
ContentThis course involves the participation in a substantial development and/or evaluation project involving distributed systems technology. There are projects available in a wide range of areas: from web services to ubiquitous computing including as well wireless networks, ad-hoc networks, and distributed application on smartphones. The goal of the project is for the students to gain hands-on-experience with real products and the latest technology in distributed systems. There is no lecture associated to the course.
For information of the course or projects available, see https://www.dsl.inf.ethz.ch/ or contact Prof. Mattern, Prof. Wattenhofer, Prof. Roscoe or Prof. G. Alonso.
252-1407-00LAlgorithmic Game Theory Information W7 credits3V + 2U + 1AP. Penna
AbstractGame theory provides a formal model to study the behavior and interaction of self-interested users and programs in large-scale distributed computer systems without central control. The course discusses algorithmic aspects of game theory.
Learning objectiveLearning the basic concepts of game theory and mechanism design, acquiring the computational paradigm of self-interested agents, and using these concepts in the computational and algorithmic setting.
ContentThe Internet is a typical example of a large-scale distributed computer system without central control, with users that are typically only interested in their own good. For instance, they are interested in getting high bandwidth for themselves, but don't care about others, and the same is true for computational load or download rates. Game theory provides a particularly well-suited model for the behavior and interaction of such selfish users and programs. Classic game theory dates back to the 1930s and typically does not consider algorithmic aspects at all. Only a few years back, algorithms and game theory have been considered together, in an attempt to reconcile selfish behavior of independent agents with the common good.

This course discusses algorithmic aspects of game-theoretic models, with a focus on recent algorithmic and mathematical developments. Rather than giving an overview of such developments, the course aims to study selected important topics in depth.

Outline:
- Introduction to classic game-theoretic concepts.
- Existence of stable solutions (equilibria), algorithms for computing equilibria, computational complexity.
- Speed of convergence of natural game playing dynamics such as best-response dynamics or regret minimization.
- Techniques for bounding the quality-loss due to selfish behavior versus optimal outcomes under central control (a.k.a. the 'Price of Anarchy').
- Design and analysis of mechanisms that induce truthful behavior or near-optimal outcomes at equilibrium.
- Selected current research topics, such as Google's Sponsored Search Auction, the U.S. FCC Spectrum Auction, Kidney Exchange.
Lecture notesLecture notes will be usually posted on the website shortly after each lecture.
Literature"Algorithmic Game Theory", edited by N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani, Cambridge University Press, 2008;

"Game Theory and Strategy", Philip D. Straffin, The Mathematical Association of America, 5th printing, 2004

Several copies of both books are available in the Computer Science library.
Prerequisites / NoticeAudience: Although this is a Computer Science course, we encourage the participation from all students who are interested in this topic.

Requirements: You should enjoy precise mathematical reasoning. You need to have passed a course on algorithms and complexity. No knowledge of game theory is required.
252-1411-00LSecurity of Wireless Networks Information W5 credits2V + 1U + 1AS. Capkun
AbstractCore Elements: Wireless communication channel, Wireless network architectures and protocols, Attacks on wireless networks, Protection techniques.
Learning objectiveAfter this course, the students should be able to: describe and classify security goals and attacks in wireless networks; describe security architectures of the following wireless systems and networks: 802.11, GSM/UMTS, RFID, ad hoc/sensor networks; reason about security protocols for wireless network; implement mechanisms to secure
802.11 networks.
ContentWireless channel basics. Wireless electronic warfare: jamming and target tracking. Basic security protocols in cellular, WLAN and
multi-hop networks. Recent advances in security of multi-hop networks; RFID privacy challenges and solutions.
252-1425-00LGeometry: Combinatorics and Algorithms Information W6 credits2V + 2U + 1AE. Welzl, L. F. Barba Flores, M. Hoffmann, A. Pilz
AbstractGeometric structures are useful in many areas, and there is a need to understand their structural properties, and to work with them algorithmically. The lecture addresses theoretical foundations concerning geometric structures. Central objects of interest are triangulations. We study combinatorial (Does a certain object exist?) and algorithmic questions (Can we find a certain object efficiently?)
Learning objectiveThe goal is to make students familiar with fundamental concepts, techniques and results in combinatorial and computational geometry, so as to enable them to model, analyze, and solve theoretical and practical problems in the area and in various application domains.
In particular, we want to prepare students for conducting independent research, for instance, within the scope of a thesis project.
ContentPlanar and geometric graphs, embeddings and their representation (Whitney's Theorem, canonical orderings, DCEL), polygon triangulations and the art gallery theorem, convexity in R^d, planar convex hull algorithms (Jarvis Wrap, Graham Scan, Chan's Algorithm), point set triangulations, Delaunay triangulations (Lawson flips, lifting map, randomized incremental construction), Voronoi diagrams, the Crossing Lemma and incidence bounds, line arrangements (duality, Zone Theorem, ham-sandwich cuts), 3-SUM hardness, counting planar triangulations.
Lecture notesyes
LiteratureMark de Berg, Marc van Kreveld, Mark Overmars, Otfried Cheong, Computational Geometry: Algorithms and Applications, Springer, 3rd ed., 2008.
Satyan Devadoss, Joseph O'Rourke, Discrete and Computational Geometry, Princeton University Press, 2011.
Stefan Felsner, Geometric Graphs and Arrangements: Some Chapters from Combinatorial Geometry, Teubner, 2004.
Jiri Matousek, Lectures on Discrete Geometry, Springer, 2002.
Takao Nishizeki, Md. Saidur Rahman, Planar Graph Drawing, World Scientific, 2004.
Prerequisites / NoticePrerequisites: The course assumes basic knowledge of discrete mathematics and algorithms, as supplied in the first semesters of Bachelor Studies at ETH.
Outlook: In the following spring semester there is a seminar "Geometry: Combinatorics and Algorithms" that builds on this course. There are ample possibilities for Semester-, Bachelor- and Master Thesis projects in the area.
  •  Page  1  of  3 Next page Last page     All