Suchergebnis: Katalogdaten im Frühjahrssemester 2018

Biologie Master Information
Wahlvertiefung: Strukturbiologie und Biophysik
Wahlpflicht Masterkurse
551-1402-00LMolecular and Structural Biology VI: Biophysical Analysis of Macromolecular Mechanisms
This course is strongly recommended for the Masters Major "Biology and Biophysics".
W4 KP2VR. Glockshuber, T. Ishikawa, S. Jonas, B. Schuler, E. Weber-Ban
KurzbeschreibungThe course is focussed on biophysical methods for characterising conformational transitions and reaction mechanisms of proteins and biological mecromolecules, with focus on methods that have not been covered in the Biology Bachelor Curriculum.
LernzielThe goal of the course is to give the students a broad overview on biopyhsical techniques available for studying conformational transitions and complex reaction mechanisms of biological macromolecules. The course is particularly suited for students enrolled in the Majors "Structural Biology and Biophysics", "Biochemistry" and "Chemical Biology" of the Biology MSc curriculum, as well as for MSc students of Chemistry and Interdisciplinary Natural Sciences".
InhaltThe biophysical methods covered in the course include advanced reaction kinetics, methods for the thermodynamic and kinetic analysis of protein-ligand interactions, classical and dynamic light scattering, analytical ultracentrifugation, spectroscopic techniques such as fluorescence anisotropy, fluorescence resonance energy transfer (FRET) and single molecule fluorescence spectrosopy, modern electron microscopy techniques, atomic force microscopy, and isothermal and differential scanning calorimetry.
SkriptCourse material from the individual lecturers wil be made available at the sharepoint website

Voraussetzungen / BesonderesFinished BSc curriculum in Biology, Chemistry or Interdisciplinary Natural Sciences. The course is also adequate for doctoral students with research projects in structural biology, biophysics, biochemistry and chemical biology.
551-0224-00LAdvanced Proteomics Belegung eingeschränkt - Details anzeigen
Für Masterstudierende ab 2. Semester, Doktorierende und Postdoktorierende
W4 KP6GR. Aebersold, L. Gillet, M. Gstaiger, A. Leitner, P. Pedrioli
KurzbeschreibungZiel dieses Kurses ist es, etablierte und neue Technologien der Protein- und Proteome-Analyse kennenzulernen in Bezug auf ihre Anwendung in Biologie, Biotechnologie und Medizin.
Format: Einführung durch Dozent mit anschliessender Diskussion, unterstützt durch Literaturarbeit und Übungen.
LernzielIm Kurs werden sowohl die bereits etablierten als auch die neuesten derzeit entstehenden Technologien und Methoden in der Protein- und Proteomanlayse diskutiert im Hinblick auf ihre Anwendung in der Biologie, Biotechnologie, Medizin und Systembiologie.
InhaltBlock course teaching current methods for the acquisition and processing of proteomic datasets.
Voraussetzungen / BesonderesNumber of people: Not exceeding 30.
Students from ETHZ, Uni Zurich and University of Basel
Non-ETH students must register at ETH Zurich as special students Link
551-0364-00LFunctional Genomics
Information for UZH students:
Enrolment to this course unit only possible at ETH. No enrolment to module BIO 254 at UZH.
Please mind the ETH enrolment deadlines for UZH students: Link
W3 KP2VC. von Mering, C. Beyer, B. Bodenmiller, M. Gstaiger, H. Rehrauer, R. Schlapbach, K. Shimizu, N. Zamboni, weitere Dozierende
KurzbeschreibungFunctional genomics is key to understanding the dynamic aspects of genome function and regulation. Functional genomics approaches use the wealth of data produced by large-scale DNA sequencing, gene expression profiling, proteomics and metabolomics. Today functional genomics is becoming increasingly important for the generation and interpretation of quantitative biological data.
LernzielFunctional genomics is key to understanding the dynamic aspects of genome function and regulation. Functional genomics approaches use the wealth of data produced by large-scale DNA sequencing, gene expression profiling, proteomics and metabolomics. Today functional genomics is becoming increasingly important for the generation and interpretation of quantitative biological data. Such data provide the basis for systems biology efforts to elucidate the structure, dynamics and regulation of cellular networks.
InhaltThe curriculum of the Functional Genomics course emphasizes an in depth understanding of new technology platforms for modern genomics and advanced genetics, including the application of functional genomics approaches such as advanced microarrays, proteomics, metabolomics, clustering and classification. Students will learn quality controls and standards (benchmarking) that apply to the generation of quantitative data and will be able to analyze and interpret these data. The training obtained in the Functional Genomics course will be immediately applicable to experimental research and design of systems biology projects.
Voraussetzungen / BesonderesThe Functional Genomics course will be taught in English.
551-1100-00LInfectious Agents: From Molecular Biology to Disease
Number of participants limited to 22.
Requires application; selected applicants will be notified before the first week of lectures.
W4 KP2SW.‑D. Hardt, L. Eberl, U. F. Greber, A. B. Hehl, M. Kopf, S. R. Leibundgut, C. Münz, A. Oxenius, P. Sander
KurzbeschreibungLiterature seminar for students at the masters level and PhD students. Introduction to the current research topics in infectious diseases; Introduction to key pathogens which are studied as model organisms in this field; Overview over key research groups in the field of infectious diseases in Zürich.
LernzielWorking with the current research literature. Getting to know the key pathogens serving as model organisms and the research technologies currently used in infection biology.
Inhaltfor each model pathogen (or key technology):
1. introduction to the pathogen
2. Discussion of one current research paper.
The paper will be provided by the respective supervisor. He/she will give advice (if required) and guide the respective literature discussion.
SkriptTeachers will provide the research papers to be discussed.
Students will prepare handouts for the rest of the group for their assigned seminar.
LiteraturTeachers will provide the research papers to be discussed.
Voraussetzungen / BesonderesRestricted to max 22 students. Please sign up until two weeks before the beginning of the semester via e-mail to Link and include the following information: 551-1100-00L; your name, your e-mail address, university/eth, students (specialization, semester), PhD students (research group, member of a PhD program? which program?). The 22 students admitted to this seminar will be selected and informed by e-mail in the week befor the beginning of the semester by W.-D. Hardt.
The first seminar date will serve to form groups of students and assign a paper to each group.
551-1404-00LRNA and Proteins: Post-Transcriptional Regulation of Gene Expression (University of Zurich)
Der Kurs muss direkt an der UZH belegt werden.
UZH Modulkürzel: BCH252

Beachten Sie die Einschreibungstermine an der UZH: Link
W3 KP2VUni-Dozierende
KurzbeschreibungThe course introduces the cellular processes and molecular mechanisms involved in regulating genome expression at the post-transcriptional level.
Topics will include :
-RNA processing, and transport;
-protein synthesis and translational control, trafficking and degradation;
-RNA-guided regulation (RNA interference, microRNAs);
-molecular surveillance and quality control mechanisms
Lernziel-Outline the cellular processes
used by eukaryotic and prokaryotic cells
to control gene expression at the post-
transcriptional level.
-Describe the molecular mechanisms
underlying post-transcriptional gene
-Identify experimental approaches
used to study post-transcriptional gene
regulation and describe their strengths
and weaknesses.
551-1412-00LMolecular and Structural Biology IV: Visualizing Macromolecules by X-ray Crystallography and EMW4 KP2VN. Ban, D. Böhringer, T. Ishikawa, M. A. Leibundgut, K. Locher, M. Pilhofer, K. Wüthrich
KurzbeschreibungThis course provides an in-depth discussion of two main methods to determine the 3D structures of macromolecules and complexes at high resolution: X-ray crystallography and cryo-electron microscopy. Both techniques result in electron density maps that are interpreted by atomic models.
LernzielStudents will obtain the theoretical background to understand structure determination techniques employed in X-ray crystallography and electron microscopy, including diffraction theory, crystal growth and analysis, reciprocal space calculations, interpretation of electron density, structure building and refinement as well as validation. The course will also provide an introduction into the use of cryo-electron tomography to visualize complex cellular substructures at sub-nanometer resolutions, effectively bridging the resolution gap between optical microscopy and single particle cryo-electron microscopy. Lectures will be complemented with practical sessions where students will have a chance to gain hands on experience with sample preparation, data processing and structure building and refinement.
551-1414-00LMolecular and Structural Biology V: Studying Macromolecules by NMR and EPRW4 KP2VF. Allain, A. D. Gossert, G. Jeschke, K. Wüthrich
KurzbeschreibungThe course provides an overview of experimental methods for the determination of structures of macromolecules at atomic resolution in solution. The two main methods used are Nuclear Magnetic Resonance (NMR) spectroscopy and Electron Paramagnetic Resonance (EPR) spectroscopy.
LernzielInsight into the methodology, areas of application and limitations of these two methods for the structure determination of biological macromolecules. Practical exercises with spectra to have hands on understanding of the methodology.
InhaltPart I: Methods for the determination of protein structures in solution using nuclear magnetic resonance (NMR) spectroscopy. Experimental approaches to the characterization of intramolecular dynamics of proteins.
Part II: NMR methods for structurally characterizing RNA and protein-RNA complexes.
Part III: EPR of biomolecules
Literatur1) Wüthrich, K. NMR of Proteins and Nucleic Acids, Wiley-Interscience.
2) Dominguez et al, Prog Nucl Magn Reson Spectrosc. 2011 Feb;58(1-2):1-61.
3) Duss O et al, Methods Enzymol. 2015;558:279-331.
  •  Seite  1  von  1