Search result: Catalogue data in Spring Semester 2018
MAS in Medical Physics | ||||||
Specialization: General Medical Physics and Biomedical Engineering | ||||||
Major in Neuroinformatics | ||||||
Core Courses | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|
227-1034-00L | Computational Vision (University of Zurich) No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH. UZH Module Code: INI402 Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/mobilitaet.html | W | 6 credits | 2V + 1U | D. Kiper, K. A. Martin | |
Abstract | This course focuses on neural computations that underlie visual perception. We study how visual signals are processed in the retina, LGN and visual cortex. We study the morpholgy and functional architecture of cortical circuits responsible for pattern, motion, color, and three-dimensional vision. | |||||
Learning objective | This course considers the operation of circuits in the process of neural computations. The evolution of neural systems will be considered to demonstrate how neural structures and mechanisms are optimised for energy capture, transduction, transmission and representation of information. Canonical brain circuits will be described as models for the analysis of sensory information. The concept of receptive fields will be introduced and their role in coding spatial and temporal information will be considered. The constraints of the bandwidth of neural channels and the mechanisms of normalization by neural circuits will be discussed. The visual system will form the basis of case studies in the computation of form, depth, and motion. The role of multiple channels and collective computations for object recognition will be considered. Coordinate transformations of space and time by cortical and subcortical mechanisms will be analysed. The means by which sensory and motor systems are integrated to allow for adaptive behaviour will be considered. | |||||
Content | This course considers the operation of circuits in the process of neural computations. The evolution of neural systems will be considered to demonstrate how neural structures and mechanisms are optimised for energy capture, transduction, transmission and representation of information. Canonical brain circuits will be described as models for the analysis of sensory information. The concept of receptive fields will be introduced and their role in coding spatial and temporal information will be considered. The constraints of the bandwidth of neural channels and the mechanisms of normalization by neural circuits will be discussed. The visual system will form the basis of case studies in the computation of form, depth, and motion. The role of multiple channels and collective computations for object recognition will be considered. Coordinate transformations of space and time by cortical and subcortical mechanisms will be analysed. The means by which sensory and motor systems are integrated to allow for adaptive behaviour will be considered. | |||||
Literature | Books: (recommended references, not required) 1. An Introduction to Natural Computation, D. Ballard (Bradford Books, MIT Press) 1997. 2. The Handbook of Brain Theorie and Neural Networks, M. Arbib (editor), (MIT Press) 1995. | |||||
Practical Work | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
465-0800-00L | Practical Work Only for MAS in Medical Physics | O | 4 credits | external organisers | ||
Abstract | The practical work is designed to train the students in the solution of a specific problem and provides insights in the field of the selected MAS specialization. Tutors propose the subject of the project, the project plan, and the roadmap together with the student, as well as monitor the overall execution. | |||||
Learning objective | The practical work is aimed at training the student’s capability to apply and connect specific skills acquired during the MAS specialization program towards the solution of a focused problem. | |||||
Electives | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
227-1046-00L | Computer Simulations of Sensory Systems | W | 3 credits | 2V + 1U | T. Haslwanter | |
Abstract | This course deals with computer simulations of the human auditory, visual, and balance system. The lecture will cover the physiological and mechanical mechanisms of these sensory systems. And in the exercises, the simulations will be implemented with Python (or Matlab). The simulations will be such that their output could be used as input for actual neuro-sensory prostheses. | |||||
Learning objective | Our sensory systems provide us with information about what is happening in the world surrounding us. Thereby they transform incoming mechanical, electromagnetic, and chemical signals into “action potentials”, the language of the central nervous system. The main goal of this lecture is to describe how our sensors achieve these transformations, how they can be reproduced with computational tools. For example, our auditory system performs approximately a “Fourier transformation” of the incoming sound waves; our early visual system is optimized for finding edges in images that are projected onto our retina; and our balance system can be well described with a “control system” that transforms linear and rotational movements into nerve impulses. In the exercises that go with this lecture, we will use Python to reproduce the transformations achieved by our sensory systems. The goal is to write programs whose output could be used as input for actual neurosensory prostheses: such prostheses have become commonplace for the auditory system, and are under development for the visual and the balance system. For the corresponding exercises, at least some basic programing experience is required. | |||||
Content | The following topics will be covered: • Introduction into the signal processing in nerve cells. • Introduction into Python. • Simplified simulation of nerve cells (Hodgkins-Huxley model). • Description of the auditory system, including the application of Fourier transforms on recorded sounds. • Description of the visual system, including the retina and the information processing in the visual cortex. The corresponding exercises will provide an introduction to digital image processing. • Description of the mechanics of our balance system, and the “Control System”-language that can be used for an efficient description of the corresponding signal processing (essentially Laplace transforms and control systems). | |||||
Lecture notes | For each module additional material will be provided on the e-learning platform "moodle". The main content of the lecture is also available as a wikibook, under http://en.wikibooks.org/wiki/Sensory_Systems | |||||
Literature | Open source information is available as wikibook http://en.wikibooks.org/wiki/Sensory_Systems For good overviews I recommend: • L. R. Squire, D. Berg, F. E. Bloom, Lac S. du, A. Ghosh, and N. C. Spitzer. Fundamental Neuroscience, Academic Press - Elsevier, 2012 [ISBN: 9780123858702]. This book covers the biological components, from the functioning of an individual ion channels through the various senses, all the way to consciousness. And while it does not cover the computational aspects, it nevertheless provides an excellent overview of the underlying neural processes of sensory systems. • Principles of Neural Science (5th Ed, 2012), by Eric Kandel, James Schwartz, Thomas Jessell, Steven Siegelbaum, A.J. Hudspeth ISBN 0071390111 / 9780071390118 The standard textbook on neuroscience. • P Wallisch, M Lusignan, M. Benayoun, T. I. Baker, A. S. Dickey, and N. G. Hatsopoulos. MATLAB for Neuroscientists, Academic Press, 2009. Compactly written, it provides a short introduction to MATLAB, as well as a very good overview of MATLAB’s functionality, focusing on applications in different areas of neuroscience. • G. Mather. Foundations of Sensation and Perception, 2nd Ed Psychology Press, 2009 [ISBN: 978-1-84169-698-0 (hardcover), oder 978-1-84169-699-7 (paperback)] A coherent, up-to-date introduction to the basic facts and theories concerning human sensory perception. | |||||
Prerequisites / Notice | Since I have to gravel from Linz, Austria, to Zurich to give this lecture, I plan to hold this lecture in blocks (every 2nd week). | |||||
376-1792-00L | Introductory Course in Neuroscience II (University of Zurich) No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH. UZH Module Code: SPV0Y020 Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/mobilitaet.html | W | 2 credits | 2V | University lecturers | |
Abstract | This course discusses behavioral aspects in neuroscience. Modern brain imaging methods are described. Clinical issues including diseases of the nervous system are studied. Sleep research and neuroimmunology are discussed. Finally, the course deals with the basic concepts in psychiatry. | |||||
Learning objective | ||||||
Prerequisites / Notice | Für Doktorierende des Zentrums für Neurowissenschaften Zürich. | |||||
376-1796-00L | Advanced Course in Neurobiology II (University of Zurich) No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH. UZH Module Code: SPV0Y009 Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/mobilitaet.html | W | 2 credits | 2V | J.‑M. Fritschy, University lecturers | |
Abstract | The goal of this Advanced Course in Neurobiology is to provide students with a broader knowledge in several important areas of neurobiology. The course consists of four parts: Part I deals with various topics in developmental neurobiology. Part II is devoted to aspects of signal transduction. Part III focuses on synaptic transmission. Part IV gives deeper insights into systems neuroscience. | |||||
Learning objective | This credit point course is designed for doctoral students who have successfully completed the Introductory Course in Neuroscience at the Neuroscience Center Zürich. The goal is to provide students with a broader and deeper knowledge in several important areas of neurobiology. | |||||
Prerequisites / Notice | Für Doktorierende des Zentrums für Neurowissenschaften Zürich. Nicht für Master-Studierende geeignet. |
- Page 1 of 1