Search result: Catalogue data in Spring Semester 2018
MAS in Medical Physics | ||||||
Specialization: General Medical Physics and Biomedical Engineering | ||||||
Major in Biomechanics | ||||||
Core Courses | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|
376-1712-00L | Finite Element Analysis in Biomedical Engineering | W | 3 credits | 2V | S. J. Ferguson, B. Helgason | |
Abstract | This course provides an introduction to finite element analysis, with a specific focus on problems and applications from biomedical engineering. | |||||
Learning objective | Finite element analysis is a powerful simulation method for the (approximate) solution of boundary value problems. While its traditional roots are in the realm of structural engineering, the methods have found wide use in the biomedical engineering domain for the simulation of the mechanical response of the human body and medical devices. This course provides an introduction to finite element analysis, with a specific focus on problems and applications from biomedical engineering. This domain offers many unique challenges, including multi-scale problems, multi-physics simulation, complex and non-linear material behaviour, rate-dependent response, dynamic processes and fluid-solid interactions. Theories taught are reinforced through practical applications in self-programmed and commercial simulation software, using e.g. MATLAB, ANSYS, FEBIO. | |||||
Content | (Theory) The Finite Element and Finite Difference methods Gallerkin, weighted residuals, discretization (Theory) Mechanical analysis of structures Trusses, beams, solids and shells, DOFs, hand calculations of simple FE problems, underlying PDEs (Application) Mechanical analysis of structures Truss systems, beam systems, 2D solids, meshing, organ level analysis of bones (Theory and Application) Mechanical analysis of structures Micro- and multi-scale analysis, voxel models, solver limitations, large scale solvers (Theory) Non-linear mechanical analysis of structures Large strain, Newton-Rhapson, plasticity (Application) Non-linear mechanical analysis of structures Plasticity (bone), hyperelasticity, viscoelasticity (Theory and Application) Contact analysis Friction, bonding, rough contact, implants, bone-cement composites, pushout tests (Theory) Flow in Porous Media Potential problems, Terzhagi's consolidation (Application) Flow in Porous Media Confined and unconfined compression of cartilage (Theory) Heat Transfer and Mass Transport Diffusion, conduction and convection, equivalency of equations (Application) Heat Transfer and Mass Transport Sequentially-coupled poroelastic and transport models for solute transport (Theory) Computational Biofluid Dynamics Newtonian vs. Non-Newtonian fluid, potential flow (Application) Computational Biofluid Dynamics Flow between micro-rough parallel plates | |||||
Lecture notes | Handouts consisting of (i) lecturers' script, (ii) selected excerpts from relevant textbooks, (iii) selected excerpts from theory manuals of commercial simulation software, (iv) relevant scientific publications. | |||||
Prerequisites / Notice | Familiarity with basic numerical methods. Programming experience with MATLAB. | |||||
376-1397-00L | Orthopaedic Biomechanics | W | 4 credits | 3G | R. Müller, G. H. Van Lenthe | |
Abstract | This course is aimed at studying the mechanical and structural engineering of the musculoskeletal system alongside the analysis and design of orthopaedic solutions to musculoskeletal failure. | |||||
Learning objective | To apply engineering and design principles to orthopaedic biomechanics, to quantitatively assess the musculoskeletal system and model it, and to review rigid-body dynamics in an interesting context. | |||||
Content | Engineering principles are very important in the development and application of quantitative approaches in biology and medicine. This course includes a general introduction to structure and function of the musculoskeletal system: anatomy and physiology of musculoskeletal tissues and joints; biomechanical methods to assess and quantify tissues and large joint systems. These methods will also be applied to musculoskeletal failure, joint replacement and reconstruction; implants; biomaterials and tissue engineering. | |||||
Lecture notes | Stored on ILIAS. | |||||
Literature | Orthopaedic Biomechanics: Mechanics and Design in Musculoskeletal Systems Authors: Donald L. Bartel, Dwight T. Davy, Tony M. Keaveny Publisher: Prentice Hall; Copyright: 2007 ISBN-10: 0130089095; ISBN-13: 9780130089090 | |||||
Prerequisites / Notice | Lectures will be given in English. | |||||
376-1392-00L | Mechanobiology: Implications for Development, Regeneration and Tissue Engineering | W | 3 credits | 2G | A. Ferrari, K. Würtz-Kozak, M. Zenobi-Wong | |
Abstract | This course will emphasize the importance of mechanobiology to cell determination and behavior. Its importance to regenerative medicine and tissue engineering will also be addressed. Finally, this course will discuss how age and disease adversely alter major mechanosensitive developmental programs. | |||||
Learning objective | This course is designed to illuminate the importance of mechanobiological processes to life as well as to teach good experimental strategies to investigate mechanobiological phenomena. | |||||
Content | Typically, cell differentiation is studied under static conditions (cells grown on rigid plastic tissue culture dishes in two-dimensions), an experimental approach that, while simplifying the requirements considerably, is short-sighted in scope. It is becoming increasingly apparent that many tissues modulate their developmental programs to specifically match the mechanical stresses that they will encounter in later life. Examples of known mechanosensitive developmental programs include all forms of myogenesis (cardiac, skeletal and smooth muscles), osteogenesis (bones), chondrogenesis (cartilage), tendogenesis (tendons) and angiogenesis (blood vessels). Furthermore, general forms of cell behavior such as migration, extracellular matrix deposition, and complex tissue differentiation are also regulated by mechanical stimuli. Mechanically-regulated cellular processes are thus ubiquitous, ongoing and of great clinical importance. The overall importance of mechanobiology to humankind is illustrated by the fact that nearly 80% of our entire body mass arises from tissues originating from mechanosensitive developmental programs, principally bones and muscles. Unfortunately, our ability to regenerate mechanosensitive tissue diminishes in later life. As it is estimated that the fraction of the western world population over 65 years of age will double in the next 25 years, an urgency in the global biomedical arena exists to better understand how to optimize complex tissue development under physiologically-relevant mechanical environments for purposes of regenerative medicine and tissue engineering. | |||||
Lecture notes | n/a | |||||
Literature | Topical Scientific Manuscripts | |||||
Practical Work | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
465-0800-00L | Practical Work Only for MAS in Medical Physics | O | 4 credits | external organisers | ||
Abstract | The practical work is designed to train the students in the solution of a specific problem and provides insights in the field of the selected MAS specialization. Tutors propose the subject of the project, the project plan, and the roadmap together with the student, as well as monitor the overall execution. | |||||
Learning objective | The practical work is aimed at training the student’s capability to apply and connect specific skills acquired during the MAS specialization program towards the solution of a focused problem. | |||||
Electives | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
151-0630-00L | Nanorobotics | W | 4 credits | 2V + 1U | S. Pané Vidal | |
Abstract | Nanorobotics is an interdisciplinary field that includes topics from nanotechnology and robotics. The aim of this course is to expose students to the fundamental and essential aspects of this emerging field. | |||||
Learning objective | The aim of this course is to expose students to the fundamental and essential aspects of this emerging field. These topics include basic principles of nanorobotics, building parts for nanorobotic systems, powering and locomotion of nanorobots, manipulation, assembly and sensing using nanorobots, molecular motors, and nanorobotics for nanomedicine. | |||||
151-0980-00L | Biofluiddynamics | W | 4 credits | 2V + 1U | D. Obrist, P. Jenny | |
Abstract | Introduction to the fluid dynamics of the human body and the modeling of physiological flow processes (biomedical fluid dynamics). | |||||
Learning objective | A basic understanding of fluid dynamical processes in the human body. Knowledge of the basic concepts of fluid dynamics and the ability to apply these concepts appropriately. | |||||
Content | This lecture is an introduction to the fluid dynamics of the human body (biomedical fluid dynamics). For selected topics of human physiology, we introduce fundamental concepts of fluid dynamics (e.g., creeping flow, incompressible flow, flow in porous media, flow with particles, fluid-structure interaction) and use them to model physiological flow processes. The list of studied topics includes the cardiovascular system and related diseases, blood rheology, microcirculation, respiratory fluid dynamics and fluid dynamics of the inner ear. | |||||
Lecture notes | Lecture notes are provided electronically. | |||||
Literature | A list of books on selected topics of biofluiddynamics can be found on the course web page. | |||||
376-1150-00L | Clinical Challenges in Musculoskeletal Disorders | W | 2 credits | 2G | M. Leunig, S. J. Ferguson, A. Müller | |
Abstract | This course reviews musculoskeletal disorders focusing on the clinical presentation, current treatment approaches and future challenges and opportunities to overcome failures. | |||||
Learning objective | Appreciation of the surgical and technical challenges, and future perspectives offered through advances in surgical technique, new biomaterials and advanced medical device construction methods. | |||||
Content | Foot deformities, knee injuries, knee OA, hip disorders in the child and adolescent, hip OA, spine deformities, degenerative spine disease, shoulder in-stability, hand, rheumatoid diseases, neuromuscular diseases, sport injuries and prevention | |||||
376-1168-00L | Sports Biomechanics | W | 3 credits | 2V | S. Lorenzetti | |
Abstract | Various types of sport are studied from a mechanical point of view. Of particular interest are the key parameters of a sport as well as the performance relevant indicators. | |||||
Learning objective | The aim of this lecture is to enable the students to study a sport from a biomechanical viewpoint and to develop significant models for which evaluations of the limitations and verifications can be carried out. | |||||
Content | Sport biomechanics is concerned with the physical and mechanical basic principles of sports. The lecture requires an in-depth mechanical understanding on the side of the student. In this respect, the pre-attendance of the lectures Biomechanics II and Movement and Sports Biomechanics or an equivalent course is expected. The human body is treated as a mechanical system during sport. The interaction of the active and passive movements and outside influences is analysed. Using sports such as ski-jumping, cycling, or weight training, applicable models are created, analyzed and suitable measuring methods are introduced. In particular, the constraints as well as the limitations of the models are of great relevance. The students develop their own models for different sport types, critically discuss the advantages and disadvantages and evaluate applicable measurement methods. | |||||
Lecture notes | Handout will be distributed. | |||||
376-1217-00L | Rehabilitation Engineering I: Motor Functions | W | 4 credits | 2V + 1U | R. Riener, J. Duarte Barriga | |
Abstract | “Rehabilitation engineering” is the application of science and technology to ameliorate the handicaps of individuals with disabilities in order to reintegrate them into society. The goal of this lecture is to present classical and new rehabilitation engineering principles and examples applied to compensate or enhance especially motor deficits. | |||||
Learning objective | Provide theoretical and practical knowledge of principles and applications used to rehabilitate individuals with motor disabilities. | |||||
Content | “Rehabilitation” is the (re)integration of an individual with a disability into society. Rehabilitation engineering is “the application of science and technology to ameliorate the handicaps of individuals with disability”. Such handicaps can be classified into motor, sensor, and cognitive (also communicational) disabilities. In general, one can distinguish orthotic and prosthetic methods to overcome these disabilities. Orthoses support existing but affected body functions (e.g., glasses, crutches), while prostheses compensate for lost body functions (e.g., cochlea implant, artificial limbs). In case of sensory disorders, the lost function can also be substituted by other modalities (e.g. tactile Braille display for vision impaired persons). The goal of this lecture is to present classical and new technical principles as well as specific examples applied to compensate or enhance mainly motor deficits. Modern methods rely more and more on the application of multi-modal and interactive techniques. Multi-modal means that visual, acoustical, tactile, and kinaesthetic sensor channels are exploited by displaying the patient with a maximum amount of information in order to compensate his/her impairment. Interaction means that the exchange of information and energy occurs bi-directionally between the rehabilitation device and the human being. Thus, the device cooperates with the patient rather than imposing an inflexible strategy (e.g., movement) upon the patient. Multi-modality and interactivity have the potential to increase the therapeutical outcome compared to classical rehabilitation strategies. In the 1 h exercise the students will learn how to solve representative problems with computational methods applied to exoprosthetics, wheelchair dynamics, rehabilitation robotics and neuroprosthetics. | |||||
Lecture notes | Lecture notes will be distributed at the beginning of the lecture (1st session) | |||||
Literature | Introductory Books Neural prostheses - replacing motor function after desease or disability. Eds.: R. Stein, H. Peckham, D. Popovic. New York and Oxford: Oxford University Press. Advances in Rehabilitation Robotics – Human-Friendly Technologies on Movement Assistance and Restoration for People with Disabilities. Eds: Z.Z. Bien, D. Stefanov (Lecture Notes in Control and Information Science, No. 306). Springer Verlag Berlin 2004. Intelligent Systems and Technologies in Rehabilitation Engineering. Eds: H.N.L. Teodorescu, L.C. Jain (International Series on Computational Intelligence). CRC Press Boca Raton, 2001. Control of Movement for the Physically Disabled. Eds.: D. Popovic, T. Sinkjaer. Springer Verlag London, 2000. Interaktive und autonome Systeme der Medizintechnik - Funktionswiederherstellung und Organersatz. Herausgeber: J. Werner, Oldenbourg Wissenschaftsverlag 2005. Biomechanics and Neural Control of Posture and Movement. Eds.: J.M. Winters, P.E. Crago. Springer New York, 2000. Selected Journal Articles Abbas, J., Riener, R. (2001) Using mathematical models and advanced control systems techniques to enhance neuroprosthesis function. Neuromodulation 4, pp. 187-195. Burdea, G., Popescu, V., Hentz, V., and Colbert, K. (2000): Virtual reality-based orthopedic telerehabilitation, IEEE Trans. Rehab. Eng., 8, pp. 430-432 Colombo, G., Jörg, M., Schreier, R., Dietz, V. (2000) Treadmill training of paraplegic patients using a robotic orthosis. Journal of Rehabilitation Research and Development, vol. 37, pp. 693-700. Colombo, G., Jörg, M., Jezernik, S. (2002) Automatisiertes Lokomotionstraining auf dem Laufband. Automatisierungstechnik at, vol. 50, pp. 287-295. Cooper, R. (1993) Stability of a wheelchair controlled by a human. IEEE Transactions on Rehabilitation Engineering 1, pp. 193-206. Krebs, H.I., Hogan, N., Aisen, M.L., Volpe, B.T. (1998): Robot-aided neurorehabilitation, IEEE Trans. Rehab. Eng., 6, pp. 75-87 Leifer, L. (1981): Rehabilitive robotics, Robot Age, pp. 4-11 Platz, T. (2003): Evidenzbasierte Armrehabilitation: Eine systematische Literaturübersicht, Nervenarzt, 74, pp. 841-849 Quintern, J. (1998) Application of functional electrical stimulation in paraplegic patients. NeuroRehabilitation 10, pp. 205-250. Riener, R., Nef, T., Colombo, G. (2005) Robot-aided neurorehabilitation for the upper extremities. Medical & Biological Engineering & Computing 43(1), pp. 2-10. Riener, R., Fuhr, T., Schneider, J. (2002) On the complexity of biomechanical models used for neuroprosthesis development. International Journal of Mechanics in Medicine and Biology 2, pp. 389-404. Riener, R. (1999) Model-based development of neuroprostheses for paraplegic patients. Royal Philosophical Transactions: Biological Sciences 354, pp. 877-894. | |||||
Prerequisites / Notice | Target Group: Students of higher semesters and PhD students of - D-MAVT, D-ITET, D-INFK - Biomedical Engineering - Medical Faculty, University of Zurich Students of other departments, faculties, courses are also welcome | |||||
376-1308-00L | Development Strategies for Medical Implants Number of participants limited to 25 until 30. Assignments will be considered chronological. | W | 3 credits | 2V + 1U | J. Mayer-Spetzler, M. Rubert | |
Abstract | Introduction to development strategies for implantable devices considering the interdependecies of biocompatibility, clinical and economical requirements ; discussion of the state of the art and actual trends in in orthopedics, sports medicine, traumatology and cardio-vascular surgery as well as regenerative medicine (tissue engineering). | |||||
Learning objective | Basic considerations in implant development Concept of structural and surface biocompatiblity and its relevance for the design of implant and surgical technique Understanding of conflicting factors, e.g. clinical need, economics and regulatory requirements Concepts of tissue engineering, its strengths and weaknesses as current and future clinical solution | |||||
Content | Biocompatibility as bionic guide line for the development of medical implants; implant and implantation related tissue reactions, biocompatible materials and material processing technologies; implant testing and regulatory procedures; discussion of the state of the art and actual trends in implant development in orthopedics, sports medicine, traumatology, spinal and cardio-vascular surgery; introduction to tissue engineering. Selected topics will be further illustrated by commented movies from surgeries. Seminar: Group seminars on selected controversial topics in implant development. Participation is mandatory Planned excursions (limited availability, not mandatory, to be confirmed): 1. Participation (as visitor) on a life surgery (travel at own expense) | |||||
Lecture notes | Scribt (electronically available): - presented slides - selected scientific papers for further reading | |||||
Literature | Textbooks on selected topics will be introduced during the lectures | |||||
Prerequisites / Notice | Achieved Bachelor degree is mandatory The number of participants in the course is limited to 25-30 students in total. Students will be exposed to surgical movies which may cause emotional reactions. The viewing of the surgical movies is voluntary and is on the student's own responsability. | |||||
376-1721-00L | Bone Biology and Consequences for Human Health | W | 2 credits | 2V | G. A. Kuhn, J. Goldhahn, E. Wehrle | |
Abstract | Bone is a complex tissue that continuously adapts to mechanical and metabolic demands. Failure of this remodeling results in reduced mechanic stability ot the skeleton. This course will provide the basic knowledge to understand the biology and pathophysiology of bone necessary for engineering of bone tissue and design of implants. | |||||
Learning objective | After completing this course, students will be able to understand: a) the biological and mechanical aspects of normal bone remodeling b) pathological changes and their consequences for the musculoskeletal system c) the consequences for implant design, tissue engineering and treatment interventions. | |||||
Content | Bone adapts continuously to mechanical and metabolic demands by complex remodeling processes. This course will deal with biological processes in bone tissue from cell to tissue level. This lecture will cover mechanisms of bone building (anabolic side), bone resorption (catabolic side), their coupling, and regulation mechanisms. It will also cover pathological changes and typical diseases like osteoporosis. Consequences for musculoskeletal health and their clinical relevance will be discussed. Requirements for tissue engineering as well as implant modification will be presented. Actual examples from research and development will be utilized for illustration. |
- Page 1 of 1