Search result: Catalogue data in Spring Semester 2018
MAS in Medical Physics | ||||||
Specialization: Radiation Therapy | ||||||
Core Courses | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|
227-0968-00L | Monte Carlo in Medical Physics | O | 4 credits | 3G | M. Stampanoni, M. K. Fix | |
Abstract | Introduction in basics of Monte Carlo simulations in the field of medical radiation physics. General recipe for Monte Carlo simulations in medical physics from code selection to fine-tuning the implementation. Characterization of radiation by means of Monte Carlo simulations. | |||||
Learning objective | Understanding the concept of the Monte Carlo method. Getting familiar with the Monte Carlo technique, knowing different codes and several applications of this method. Learn how to use Monte Carlo in the field of applied medical radiation physics. Understand the usage of Monte Carlo to characterize the physical behaviour of ionizing radiation in medical physics. Share the enthusiasm about the potential of the Monte Carlo technique and its usefulness in an interdisciplinary environment. | |||||
Content | The lecture provides the basic principles of the Monte Carlo method in medical radiation physics. Some fundamental concepts on applications of ionizing radiation in clinical medical physics will be reviewed. Several techniques in order to increase the simulation efficiency of Monte Carlo will be discussed. A general recipe for performing Monte Carlo simulations will be compiled. This recipe will be demonstrated for typical clinical devices generating ionizing radiation, which will help to understand implementation of a Monte Carlo model. Next, more patient related effects including the estimation of the dose distribution in the patient, patient movements and imaging of the patient's anatomy. A further part of the lecture covers the simulation of radioactive sources as well as heavy ion treatment modalities. The field of verification and quality assurance procedures from the perspective of Monte Carlo simulations will be discussed. To complete the course potential future applications of Monte Carlo methods in the evolving field of treating patients with ionizing radiation. | |||||
Lecture notes | A script will be provided. | |||||
402-0342-00L | Medical Physics II | O | 6 credits | 2V + 1U | P. Manser | |
Abstract | Applications of ionizing radiation in medicine such as radiation therapy, nuclear medicine and radiation diagnostics. Theory of dosimetry based on cavity theory and clinical consequences. Fundamentals of dose calculation, optimization and evaluation. Concepts of external beam radiation therapy and brachytherapy. Recent and future developments: IMRT, IGRT, SRS/SBRT, particle therapy. | |||||
Learning objective | Getting familiar with the different medical applications of ionizing radiation in the fields of radiation therapy, nuclear medicine, and radiation diagnostics. Dealing with concepts such as external beam radiation therapy as well as brachytherapy for the treatment of cancer patients. Understanding the fundamental cavity theory for dose measurements and its consequences on clinical practice. Understanding different delivery techniques such as IMRT, IGRT, SRS/SBRT, brachytherapy, particle therapy using protons, heavy ions or neutrons. Understanding the principles of dose calculation, optimization and evaluation for radiation therapy, nuclear medicine and radiation diagnostic applications. Finally, the lecture aims to demonstrate that medical physics is a fascinating and evolving discipline where physics can directly be used for the benefits of patients and the society. | |||||
Content | In this lecture, the use of ionizing radiation in different clinical applications is discussed. Primarily, we will concentrate on radiation therapy and will cover applications such as external beam radiotherapy with photons and electrons, intensity modulated radiotherapy (IMRT), image guided radiotherapy (IGRT), stereotactic radiotherapy and radiosurgery, brachytherapy, particle therapy using protons, heavy ions or neutrons. In addition, dosimetric methods based on cavity theory are reviewed and principles of treatment planning (dose calculation, optimization and evaluation) are discussed. Next to these topics, applications in nuclear medicine and radiation diagnostics are explained with the clear focus on dosimetric concepts and behaviour. | |||||
Lecture notes | A script will be provided. | |||||
Prerequisites / Notice | It is recommended that the students have taken the lecture Medical Physics I in advance. | |||||
465-0968-00L | Medical Physics in Practice | O | 2 credits | 2V | P. Manser, Speakers | |
Abstract | The aim of this lecture is to study different aspects of medical physics from the practical view. One main component is to assist the students for getting in contact with medical physicists and to build a platform for a dialogue. For this purpose, a number of lecturers from entire Switzerland are reportig about their work as a medical physicist. | |||||
Learning objective | The aim of this lecture is to study different aspects of medical physics from the practical view. | |||||
Practical Work | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
465-0420-00L | Radiation Protection Course Only for MAS in Medical Physics | O | 4 credits | 6G | external organisers | |
Abstract | The course contains all topics in theory and practice, which are necessary for the officially recognized radiation protection officer working with open radioactive materials in working areas B and C. After successful completed exams a BAG recognized certificate is issued. This permits also an appointment as radiation protection delegate in the area of responsibility of the ENSI. | |||||
Learning objective | The participants of this course will acquire the competence, the capabilities and the knowledge in order to fulfil the tasks of a radiation protection officer working with open radioactive materials in working areas B and C in accordance with the ordinance of education in radiation protection (814.501.261). | |||||
Content | - Grundkenntnisse der Strahlenphysik und der Strahlenbiologie - Dosisabschätzung bei interner und externer Bestrahlung - Kenntnis der für den Umgang mit offenen und geschlossenen Strahlenquellen massgeblichen Gesetzen und Verordnungen - Erkennen und abschätzen von Gefährdungspotenzialen - Festlegen von Strahlenschutz-Betriebsvorschriften, Sicherheitsplänen sowie baulicher, organisatorischer und operationeller Massnahmen - Kenntnis und Anwendung von Messgeräten - Planung und Durchführung der Personen- und Arbeitsplatzüberwachung |
- Page 1 of 1