Search result: Catalogue data in Autumn Semester 2017

Environmental Sciences Master Information
Minors
Minor in Sustainable Energy Use
NumberTitleTypeECTSHoursLecturers
701-0967-00LProject Development in Renewable Energies Information Restricted registration - show details
Number of participants limited to 30.
W2 credits2GR. Rechsteiner, A. Appenzeller, A. Wanner
AbstractProject development in renewable Energies
Realization of projects in the field of renewable energies, analysis of legal frame conditions and risks.
The students learn basics of renewable energy project realization from acknowledged experts active in the field.
They identify different tasks of various investor types.
They develop sample projects in practice within groups
ObjectiveYou become acquainted with the regulative, juridical and economic requirements of project development in renewable energies in the fireld of wind power, solar power and hydro power.
You learn to launch and judge projects by exercises in groups
You recognize chances and risks of renewable energy projects
ContentBusiness models for renewable energy projects
Introduction of market trends, market structure, technical trends and regulation in Switzerland and in the EU internal energy market
Necessary frame conditions for profitable projects
Project development samples and exercises in
wind power
hydro power
photovoltaics
due diligence and country assessment.
Exact Program in German below
Link
Lecture notesPPT presentation will be distributed (in German)
special frames:
Link
LiteratureREN21 Renewables GLOBAL STATUS REPORT
Link
Mit einer grünen Anlage schwarze Zahlen schreiben Link
UNEP: Global Trends in Renewable Energy Investments
Link
Energiestrategie 2050 Faktenblätter des Bundes (PDF): Link
Ryan Wiser, Mark Bolinger: Wind Technologies Market Report 2015, Lawrence Berkeley National Laboratory
Link
IEA PVPS: TRENDS 2014 IN PHOTOVOLTAIC APPLICATIONS
Link
Bundesamt für Energie: Perspektiven für die Grosswasserkraft in der Schweiz Link
Windenergie-Report Deutschland Link
Prerequisites / NoticeFor group exercise and presentation reasons the number of participants is limited at 30 students. For exercices students build learning and presentational groups.
701-1346-00LCarbon Mitigation Information W3 credits2GN. Gruber
AbstractFuture climate change can only kept within reasonable bounds when CO2 emissions are drastically reduced. In this course, we will discuss a portfolio of options involving the alteration of natural carbon sinks and carbon sequestration. The course includes introductory lectures, presentations from guest speakers from industry and the public sector, and final presentations by the students.
ObjectiveThe goal of this course is to investigate, as a group, a particular set of carbon mitigation/sequestration options and to evaluate their potential, their cost, and their consequences.
ContentFrom the large number of carbon sequestration/mitigation options, a few options will be selected and then investigated in detail by the students. The results of this research will then be presented to the other students, the involved faculty, and discussed in detail by the whole group.
Lecture notesNone
LiteratureWill be identified based on the chosen topic.
Prerequisites / NoticeExam: No final exam. Pass/No-Pass is assigned based on the quality of the presentation and ensuing discussion.
051-0551-00LEnergy- and Climate Systems I Information
Expiring study program according to BSc 2011 regulations.
W2 credits2GA. Schlüter
AbstractThe first semester of the annual course focuses on physical principles, component and systems for the efficient and sustainable heating, cooling and ventilation of buildings on different scales and the interaction of technical systems with architectural and urban design.
ObjectiveAfter this lecture, students can identify relevant physical principles, active and passive approaches, technical components and systems for efficient and sustainable supply of buildings with heat, cold and fresh air. Students are aware of the implications and interactions of such technical systems on urban and architectural design, construction and operation of buildings. Using simplified methods of analysis and quantification, students are able to estimate the relevant qualities and quantities to supply a building.
Content1. Introduction and overview
2. Heating and cooling systems in buildings
3. Thermal storage
4. District energy systems
5. Natural and mechanical ventilation
Lecture notesThe Slides from the lecture serve as lecture notes and are available as download.
LiteratureA list of relevant literature is available at the chair.
227-0731-00LPower Market I - Portfolio and Risk Management Information W6 credits4GD. Reichelt, G. A. Koeppel
AbstractPortfolio and risk management in the electrical power business, Pan-European power market and trading, futures and forward contracts, hedging, options and derivatives, performance indicators for the risk management, modelling of physical assets, cross-border trading, ancillary services, balancing power market, Swiss market model
ObjectiveKnowlege on the worldwide liberalisation of electricity markets, pan-european power trading and the role of power exchanges. Understand financial products (derivatives) based on power. Management of a portfolio containing physical production, contracts and derivatives. Evaluate trading and hedging strategies. Apply methods and tools of risk management.
Content1. Pan-European power market and trading
1.1. Power trading
1.2. Development of the European power markets
1.3. Energy economics
1.4. Spot and OTC trading
1.5. European energy exchange EEX

2. Market model
2.1. Market place and organisation
2.2. Balance groups / balancing energy
2.3. Ancillary services
2.4. Market for ancillary services
2.5. Cross-border trading
2.6. Capacity auctions

3. Portfolio and Risk management
3.1. Portfolio management 1 (introduction)
3.2. Forward and futures contracts
3.3. Risk management 1 (m2m, VaR, hpfc, volatility, cVaR)
3.4. Risk management 2 (PaR)
3.5. Contract valuation (HPFC)
3.6. Portfolio management 2
2.8. Risk Management 3 (enterprise wide)

4. Energy & Finance I
4.1. Options 1 – basics
4.2. Options 2 – hedging with options
4.3. Introduction to derivatives (swaps, cap, floor, collar)
4.4. Financial modelling of physical assets
4.5. Trading and hydro power
4.6. Incentive regulation
Lecture notesHandouts of the lecture
Prerequisites / Notice1 excursion per semester, 2 case studies, guest speakers for specific topics.
Course Moodle: Link
227-1631-00LEnergy System Analysis Information W4 credits3GG. Hug, S. Hellweg, F. Noembrini, A. Schlüter
AbstractThe course provides an introduction to the methods and tools for analysis of energy consumption, energy production and energy flows. Environmental aspects are included as well as economical considerations. Different sectors of the society are discussed, such as electric power, buildings, and transportation. Models for energy system analysis planning are introduced.
ObjectiveThe purpose of the course is to give the participants an overview of the methods and tools used for energy systems analysis and how to use these in simple practical examples.
ContentThe course gives an introduction to methods and tools for analysis of energy consumption, energy production and energy flows. Both larger systems, e.g. countries, and smaller systems, e.g. industries, homes, vehicles, are studied. The tools and methods are applied to various problems during the exercises. Different conventions of energy statistics used are introduced.

The course provides also an introduction to energy systems models for developing scenarios of future energy consumption and production. Bottom-up and Top-Down approaches are addressed and their features and applications discussed.

The course contains the following parts:
Part I: Energy flows and energy statistics
Part II: Environmental impacts
Part III: Electric power systems
Part IV: Energy in buildings
Part V: Energy in transportation
Part VI: Energy systems models
Lecture notesHandouts
LiteratureExcerpts from various books, e.g. K. Blok: Introduction to Energy Analysis, Techne Press, Amsterdam 2006, ISBN 90-8594-016-8
529-0193-00LRenewable Energy Technologies I
Does not take place this semester.
The lectures Renewable Energy Technologies I (529-0193-00L) and Renewable Energy Technologies II (529-0191-01L) can be taken independently from one another.
W4 credits3GA. Wokaun, A. Steinfeld
AbstractScenarios for world energy demand and CO2 emissions, implications for climate. Methods for the assessment of energy chains. Potential and technology of renewable energies: Biomass (heat, electricity, biofuels), solar energy (low temp. heat, solar thermal and photovoltaic electricity, solar chemistry). Wind and ocean energy, heat pumps, geothermal energy, energy from waste. CO2 sequestration.
ObjectiveScenarios for the development of world primary energy consumption are introduced. Students know the potential and limitations of renewable energies for reducing CO2 emissions, and their contribution towards a future sustainable energy system that respects climate protection goals.
ContentScenarios for the development of world energy consumption, energy intensity and economic development. Energy conversion chains, primary energy sources and availability of raw materials. Methods for the assessment of energy systems, ecological balances and life cycle analysis of complete energy chains. Biomass: carbon reservoirs and the carbon cycle, energetic utilisation of biomass, agricultural production of energy carriers, biofuels. Solar energy: solar collectors, solar-thermal power stations, solar chemistry, photovoltaics, photochemistry. Wind energy, wind power stations. Ocean energy (tides, waves). Geothermal energy: heat pumps, hot steam and hot water resources, hot dry rock (HDR) technique. Energy recovery from waste. Greenhouse gas mitigation, CO2 sequestration, chemical bonding of CO2. Consequences of human energy use for ecological systems, atmosphere and climate.
Lecture notesLecture notes will be distributed electronically during the course.
Literature- Kaltschmitt, M., Wiese, A., Streicher, W.: Erneuerbare Energien (Springer, 2003)

- Tester, J.W., Drake, E.M., Golay, M.W., Driscoll, M.J., Peters, W.A.: Sustainable Energy - Choosing Among Options (MIT Press, 2005)

- G. Boyle, Renewable Energy: Power for a sustainable futureOxford University Press, 3rd ed., 2012, ISBN: 978-0-19-954533-9

-V. Quaschning, Renewable Energy and Climate ChangeWiley- IEEE, 2010, ISBN: 978-0-470-74707-0, 9781119994381 (online)
Prerequisites / NoticeFundamentals of chemistry, physics and thermodynamics are a prerequisite for this course.

Topics are available to carry out a Project Work (Semesterarbeit) on the contents of this course.
Minor in Global Change and Sustainability
NumberTitleTypeECTSHoursLecturers
701-0015-00LTransdisciplinary Research: Challenges of Interdisciplinarity and Stakeholder EngagementW2 credits2SM. Stauffacher, C. E. Pohl
AbstractThis seminar is designed for PhD students and PostDoc researchers from all departments involved in inter- or transdisciplinary research. It addresses challenges of this kind of research and discusses these using scientific literature presenting case studies, concepts, theories, methods and tools. It concludes with a 10-step approach to make participants' research projects more societally relevant.
ObjectiveParticipants know specific challenges of inter- and transdisciplinary research. They know concepts and methods to tackle questions like: how to integrate knowledge from different disciplines, how to engage with other societal actors, how to secure broader impact of research? They learn to critically reflect their research project in its societal context and on their role as scientists.
ContentThe seminar covers the following topics:
(1) Theories and concepts of inter- and transdisciplinary research
(2) The specific challenges of inter- and transdisciplinary research
(3) Collaborating disciplines
(4) Engaging with stakeholders
(5) Exploration of tools and methods
(6) 10 steps to make participants' research projects more societally relevant
LiteratureLiterature will be made available to the participants
Prerequisites / NoticeParticipation in the course requires participants to be working on their own research project.
701-1551-00LSustainability AssessmentW3 credits2GP. Krütli, C. E. Pohl
AbstractThe course deals with the concepts and methodologies for the analysis and assessment of sustainable development. A special focus is given to the social dimension and to social justice as a guiding principle of sustainability as well as to trade-offs between the three dimensions of sustainability.

The course is seminar-like, interactive.
ObjectiveAt the end of the course students should

Know:
- core concepts of sustainable development, and;
- the concept of social justice as a core element of social sustainability;
- important empirical methods for the analysis and assessment of local / regional sustainability issues.

Understand and reflect on:
- the challenges of trade-offs between the different goals of sustainable development;
- and the respective impacts on individual and societal decision-making.
ContentThe course is structured as follows:
- Overview of rationale, objectives, concepts and origins of sustainable development;
- Importance and application of sustainability in science, politics, society, and economy;
- Sustainable (local / regional) development in different national / international contexts;
- Analysis and evaluation methods of sustainable development with a focus on social justice;
- Trade-offs in selected examples.
Lecture notesHandouts.
LiteratureSelected scientific articles & book chapters
860-0023-00LInternational Environmental Politics
Particularly suitable for students of D-ITET, D-USYS
W3 credits2VT. Bernauer
AbstractThis course focuses on the conditions under which cooperation in international environmental politics emerges and the conditions under which such cooperation and the respective public policies are effective and/or efficient.
ObjectiveThe objectives of this course are to (1) gain an overview of relevant questions in the area of international environmental politics from a social sciences viewpoint; (2) learn how to identify interesting/innovative questions concerning this policy area and how to answer them in a methodologically sophisticated way; (3) gain an overview of important global and regional environmental problems.
ContentThis course deals with how and why international cooperation in environmental politics emerges, and under what circumstances such cooperation is effective and efficient. Based on theories of international political economy and theories of government regulation various examples of international environmental politics are discussed: the management of international water resources, the problem of unsafe nuclear power plants in eastern Europe, political responses to global warming, the protection of the stratospheric ozone layer, the reduction of long-range transboundary air pollution in Europe, the prevention of pollution of the oceans, etc.

The course is open to all ETH students. Participation does not require previous coursework in the social sciences.

After passing an end-of-semester test (requirement: grade 4.0 or higher) students will receive 3 ECTS credit points. The workload is around 90 hours (meetings, reading assignments, preparation of test).

Visiting students (e.g., from the University of Zurich) are subject to the same conditions. Registration of visiting students in the web-based system of ETH is compulsory.
Lecture notesAssigned reading materials and slides will be available at Link (select link 'Registered students, please click here for course materials' at top of that page). Log in with your nethz name and password. Questions concerning access to course materials can be addressed to Dennis Atzenhofer at Link). All assigned papers must be read ahead of the respective meeting. Following the course on the basis of on-line slides and papers alone is not sufficient. Physical presence in the classroom is essential. Many books and journals covering international environmental policy issues can be found at the D-GESS library at the IFW building, Haldeneggsteig 4, B-floor, or in the library of D-USYS.
LiteratureAssigned reading materials and slides will be available at Link (select link -Registered students, please click here for course materials- at top of that page). Log in with your nethz name and password. Questions concerning access to course materials can be addressed to Link).
Prerequisites / NoticeNone
551-0209-00LSustainable Plant Systems (Seminar)W2 credits2SM. Paschke, F. Liebisch, further lecturers
AbstractParticipants will be able to discuss and understand sustainability in the context of plant science research. A special focus will be on research on agro-ecological systems and farming system research.
ObjectiveKey objectives for the seminar are that (1) participants will be able to discuss issues of sustainability in the context of current plant science research topics (2) participants will be able to phrase their own visions for sustainability in plant sciences, their group work topic and their own MSc or PhD project.
ContentFuture demand in agricultural output is supposed to match the needs of 9-billion people with less input of resources.
We will discuss current plant science research in the context of sustainability on the production side. Thematic areas of the seminar include:

1 | Biotic interactions
2 | Nutrient management
3 | Plant breeding
4 | Global change

A special focus will be on research on agro-ecological systems and farming system research. Can we transform our agricultural practices and move behind existing paradigms to develop innovative and sustainable agriculture production systems? Where does current research indicate on directions for transformation of current practice and how can we assess and analyze them though research?

The course will be organized with two workshops (half days, 13:00 - 17:00) and an intensive, well-structured self-study/ group work phase in between the workshops. Online learning material in provided.



More information: Link
Lecture notesAccess to the learning platform: Link (use your AAI login)
Minor in Transdisciplinarity for Sustainable Development
NumberTitleTypeECTSHoursLecturers
701-1543-00LTransdisciplinary Methods and ApplicationsW3 credits2GP. Krütli, M. Stauffacher
AbstractThe course deals with transdisciplinary (td) methods, concepts and their applications in the context of case studies and other problem oriented research projects. Td methods are used in research at the science-society interface and when collaborating across scientific disciplines.
Students learn to apply methods within a functional framework. The format of the course is seminar-like, interactive.
ObjectiveAt the end of the course students should:

Know:
-Function, purpose and algorithm of a selected number of transdisciplinary methods

Understand:
-Functional application in case studies and other problem oriented projects

Be able to reflect on:
-Potential, limits, and necessity of transdisciplinary methods
ContentThe lecture is structured as follows:

- Overview of concepts and methods of inter-/transdisciplinary integration of knowledge, values and interests (approx. 20%)
- Analysis of a selected number of transdisciplinary methods focusing problem framing, problem analysis, and impact (approx. 50%)
- Practical application of the methods in a broader project setting (approx. 30%)
Lecture notesHandouts are provided by the lecturers
LiteratureSelected scientific articles and book-chapters
701-1551-00LSustainability AssessmentW3 credits2GP. Krütli, C. E. Pohl
AbstractThe course deals with the concepts and methodologies for the analysis and assessment of sustainable development. A special focus is given to the social dimension and to social justice as a guiding principle of sustainability as well as to trade-offs between the three dimensions of sustainability.

The course is seminar-like, interactive.
ObjectiveAt the end of the course students should

Know:
- core concepts of sustainable development, and;
- the concept of social justice as a core element of social sustainability;
- important empirical methods for the analysis and assessment of local / regional sustainability issues.

Understand and reflect on:
- the challenges of trade-offs between the different goals of sustainable development;
- and the respective impacts on individual and societal decision-making.
ContentThe course is structured as follows:
- Overview of rationale, objectives, concepts and origins of sustainable development;
- Importance and application of sustainability in science, politics, society, and economy;
- Sustainable (local / regional) development in different national / international contexts;
- Analysis and evaluation methods of sustainable development with a focus on social justice;
- Trade-offs in selected examples.
Lecture notesHandouts.
LiteratureSelected scientific articles & book chapters
Minor in Life Cycle Assessment
NumberTitleTypeECTSHoursLecturers
101-0577-00LAn Introduction to Sustainable Development in the Built EnvironmentW3 credits2GG. Habert
AbstractIn 2015, the UN Conference in Paris shaped future world objectives to tackle climate change.
in 2016, other political bodies made these changes more difficult to predict.
What does it mean for the built environment?
This course provides an introduction to the notion of sustainable development when applied to our built environment
ObjectiveAt the end of the semester, the students have an understanding of the term of sustainable development, its history, the current political and scientific discourses and its relevance for our built environment.

In order to address current challenges of climate change mitigation and resource depletion, students will learn a holistic approach of sustainable development. Ecological, economical and social constraints will be presented and students will learn about methods for argumentation and tools for assessment (i.e. life cycle assessment).

For this purpose an overview of sustainable development is presented with an introduction to the history of sustainability and its today definition as well as the role of cities, urbanisation and material resources (i.e. energy, construction material) in social economic and environmetal aspects.

The course aims to promote an integral view and understanding of sustainability and describing different spheres (social/cultural, ecological, economical, and institutional) that influence our built environment.

Students will acquire critical knowledge and understand the role of involved stakeholders, their motivations and constraints, learn how to evaluate challenges, identify deficits and define strategies to promote a more sustainable construction.

After the course students should be able to define the relevance of specific local, regional or territorial aspects to achieve coherent and applicable solutions toward sustainable development.

The course offers an environmental, socio-economic and socio-technical perspective focussing on buildings, cities and their transition to resilience with sustainable development. Students will learn on theory and application of current scientific pathways towards sustainable development.
ContentThe following topics give an overview of the themes that are to be worked on during the lecture.

- Overview on the history and emergence of sustainable development
- Overview on the current understanding and definition of sustainable development

Methods
- Method 1: Life cycle assessment (planning, construction, operation/use, deconstruction)
- Method 2: Life Cycle Costing
- Method 3: Labels and certification

Main issues:
- Operation energy at building, urban and national scale
- Mobility and density questions
- Embodied energy for developing and developed world

- Synthesis: Transition to sustainable development
Lecture notesAll relevant information will be online available before the lectures. For each lecture slides of the lecture will be provided.
LiteratureA list of the basic literature will be offered on a specific online platform, that could be used by all students attending the lectures.
102-0317-00LAdvanced Environmental Assessments Information
Master students in Environmental Engineering choosing module Ecological Systems Design are not allowed to enrol 102-0317-00 Advanced Environmental Assessments (3KP) as already included in 102-0307-01 Advanced Environmental, Social and Economic Assessments (5KP).
W3 credits2GS. Hellweg, R. Frischknecht
AbstractThis course deepens students' knowledge of the environmental assessment methodologies and their various applications.
ObjectiveThis course has the aim of deepening students' knowledge of the environmental assessment methodologies and their various applications. In particular, students completing the course should have the
- Ability to judge the scientific quality and reliability of environmental assessment studies, the appropriateness of inventory data and modelling, and the adequacy of life cycle impact assessment models and factors
- Knowledge about the current state of the scientific discussion and new research developments
- Ability to properly plan, conduct and interpret environmental assessment studies
- Knowledge of how to use LCA as a decision support tool for companies, public authorities, and consumers
Content- Inventory developments, transparency, data quality, data completeness, and data exchange formats
- Allocation (multioutput processes and recycling)
- Hybrid LCA methods.
- Consequential and marginal analysis
- Recent development in impact assessment
- Spatial differentiation in Life Cycle Assessment
- Workplace and indoor exposure in Risk and Life Cycle Assessment
- Uncertainty analysis
- Subjectivity in environmental assessments
- Multicriteria analysis
- Case Studies
Lecture notesNo script. Lecture slides and literature will be made available on the lecture homepage.
LiteratureLiterature will be made available on the lecture homepage.
Prerequisites / NoticeBasic knowledge of environmental assessment tools is a prerequisite for this class. Students that have not done classwork in this topic before are required to read an appropriate textbook before or at the beginning of this course (e.g. Jolliet, O et al. 2016: Environmental Life Cycle Assessment. CRC Press, Boca Raton - London - New York. ISBN 978-1-4398-8766-0 (Chapters 2-5.2)).
102-0317-03LAdvanced Environmental Assessment (Computer Lab I)W1 credit1US. Pfister
AbstractDifferent tools and software used for environmental assessments, such as LCA are introduced. The students will have hands-on exercises in the computer rooms and will gain basic knowledge on how to apply the software and other resources in practice
ObjectiveBecome acquainted with various software programs for environmental assessment including Life Cycle Assessment, Environmental Risk Assessment, Probabilistic Modeling, Material Flow Analysis.
102-0317-04LAdvanced Environmental Assessment (Computer Lab II) Restricted registration - show details
Not for master students in Environmental Engineering choosing module Ecological System Design as already included in Environment and Computer Laboratory I (Year Course): 102-0527-00 and 102-0528-00.
W2 credits2PS. Pfister
AbstractTechnical systems are investigated in projects, based on the software and tools introduced in the course 102-0317-03L Advanced Env. Assessment (Computer Lab I). The projects are created around a complete but simplified LCA study, where the students will learn how to answer a given question with target oriented methodologies using various software programs and data sources for env. assessment
ObjectiveBecome acquainted with utilizing various software programs for environmental assessment to perform a Life Cycle Assessment and learn how to address the challenges when analyzing a complex system with available data and software limitations.
Prerequisites / NoticePrerequisite is enrolment of 102-0317-00 Advanced Environmental Assessments and of 102-0317-03 Advanced Environmental Assessments (Computer Lab I) in parallel or in advance (both courses in HS).
Minor in Analytical Chemistry
NumberTitleTypeECTSHoursLecturers
529-0041-00LModern Mass Spectrometry, Hyphenated Methods, and ChemometricsW6 credits3GR. Zenobi, M. Badertscher, B. Hattendorf
AbstractModern mass spectrometry, hyphenated analytical methods, speciation, methods of surface analysis, chemometrics.
ObjectiveComprehensive knowledge about the analytical methods introduced in this course, and their applications.
ContentCoupling of separation with identification methods such as GC-MS, LC-MS, GC-IR, LC-IR, LC-NMR etc.; importance of speciation.
Modern mass spectrometry: Time of flight and ion cyclotron resonance mass spectrometry, ICP-MS. Soft ionization methods, desorption methods, spray methods.
Methods of surface analysis (ESCA, Auger, SIMS, raster microscopy methods).
Employment of computer science for processing data in chemical analysis (chemometrics).
Lecture noteslecture notes will be available in the lecture at production cost.
Literatureinformation about relevant literature will be available in the lecture & in the lecture notes.
Prerequisites / NoticeExercises are an integral part of the lecture.
Prerequisites:
529-0051-00 "Analytische Chemie I (3. Semester)"
529-0058-00 "Analytische Chemie II (4. Semester)"
(or equivalent)
529-0043-00LAnalytical Strategy
Does not take place this semester.
Will exceptionally not be offered in the autumn semester 2017. Will take place again in 2018.
W7 credits3GR. Zenobi, D. Günther
AbstractProblem-oriented development of analytical strategies and solutions.
ObjectiveAbility to create solutions for particular analytical problems.
ContentIndividual development of strategies for the optimal application of chemical, biochemical, and physico-chemical methods in analytical chemistry solving predefined problems. Experts from industry and administration present particular problems in their field of activity.
Principles of sampling.
Design and application of microanalytical systems.
Lecture notesCopies of problem sets and solutions will be distributed free fo charge
Prerequisites / NoticePrerequisites:
529-0051-00 "Analytical Chemistry I (3. Semester)"
529-0058-00 "Analytical Chemistry II (4. Semester)"
(or equivalent)
Minor in Biogeochemistry
NumberTitleTypeECTSHoursLecturers
701-1313-00LIsotopic and Organic Tracers in Biogeochemistry Information W3 credits2GC. Schubert, R. Kipfer
AbstractThe course introduces the scientific concepts and typical applications of tracers in biogeochemistry. The course covers stable and radioactive isotopes, geochemical tracers and biomarkers and their application in biogeochemical processes as well as regional and global cycles. The course provides essential theoretical background for the lab course "Isotopic and Organic Tracers Laboratory".
ObjectiveThe course aims at understanding the fractionation of stable isotopes in biogeochemical processes. Students learn to know the origin and decay modes of relevant radiogenic isotopes. They discover the spectrum of possible geochemical tracers and biomarkers, their potential and limitations and get familiar with important applications
ContentGeogenic and cosmogenic radionuclides (sources, decay chains);
stable isotopes in biogeochemistry (nataural abundance, fractionation);
geochemical tracers for processes such as erosion, productivity, redox fronts; biomarkers for specific microbial processes.
Lecture noteshandouts will be provided for every chapter
LiteratureA list of relevant books and papers will be provided
Prerequisites / NoticeStudents should have a basic knowledge of biogeochemical processes (BSc course on Biogeochemical processes in aquatic systems or equivalent)
701-1315-00LBiogeochemistry of Trace ElementsW3 credits2GA. Voegelin, M. Etique, L. Winkel
AbstractThe course addresses the biogeochemical classification and behavior of trace elements, including key processes driving the cycling of important trace elements in aquatic and terrestrial environments and the coupling of abiotic and biotic transformation processes of trace elements. Examples of the role of trace elements in natural or engineered systems will be presented and discussed in the course.
ObjectiveThe students are familiar with the chemical characteristics, the environmental behavior and fate, and the biogeochemical reactivity of different groups of trace elements. They are able to apply their knowledge on the interaction of trace elements with geosphere components and on abiotic and biotic transformation processes of trace elements to discuss and evaluate the behavior and impact of trace elements in aquatic and terrestrial systems.
Content(i) Definition, importance and biogeochemical classification of trace elements. (ii) Key biogeochemical processes controlling the cycling of different trace elements (base metals, redox-sensitive and chalcophile elements, volatile trace elements) in natural and engineered environments. (iii) Abiotic and biotic processes that determine the environmental fate and impact of selected trace elements.
Lecture notesSelected handouts (lecture notes, literature, exercises) will be distributed during the course.
Prerequisites / NoticeStudents are expected to be familiar with the basic concepts of aquatic and soil chemistry covered in the respective classes at the bachelor level (soil mineralogy, soil organic matter, acid-base and redox reactions, complexation and sorption reactions, precipitation/dissolution reactions, thermodynamics, kinetics, carbonate buffer system).
This lecture is a prerequisite for attending the laboratory course "Trace elements laboratory".
  •  Page  1  of  3 Next page Last page     All