Suchergebnis: Katalogdaten im Herbstsemester 2017
Umweltnaturwissenschaften Master | ||||||
Vertiefung in Wald- und Landschaftsmanagement | ||||||
Naturwissenschaftliche Grundlagen | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
701-1613-01L | Advanced Landscape Research | W | 5 KP | 3G | M. Bürgi, J. Bolliger, U. Gimmi, M. Hunziker | |
Kurzbeschreibung | This course introduces landscapes as socially perceived, spatially and temporally dynamic entities that are shaped by natural and societal factors. Concepts and qualitative and quantitative methods to study landscapes from an ecological, societal and historical perspective are presented. In a term paper students work on a landscape-related topic of their choice. | |||||
Lernziel | Students will: - learn about concepts and methods to quantify structural and functional connectivity in landscapes, particularly - be introduced to the topic of landscape genetics and its benefits and (current) limitations for applied conservation - learn about concepts and methods in scenario-based land-use change modelling - approach an understanding of landscape as perceived environment - learn about concepts of landscape preference and related measurement methods - understand the role of landscape for human well-being - be introduced into approaches of actively influencing attitudes and behavior as well as related scientific evaluation - make use of various historical sources to study landscapes and their dynamics - interpret landscapes as a result of ecological constraints and anthropogenic activities. | |||||
Inhalt | 1. Encompassing concepts and approaches - European Landscape Convention (ELC) - Ecosystem Services (ES): introduction and critical evaluation Thematic topics 2. Ecological approach: - green infrastructure (e.g., ecological conservation areas) - landscape connectivity - landscape genetics and management applications - concepts of specific quantitative methods: least cost paths, resistance surfaces, Circuitscape, networks (Conefor), land-use change models, various statistical methods 3. Social-science approach: - principle of landscape as perceived and connoted environment - theories on landscape preference and place identity - role of landscapes for recreation, health and well-being - intervention approaches for influencing attitudes and related behavior - methods of investigating the human-landscape relationship and evaluating interventions 4. Historical approach: - land use history of Switzerland (agricultural history, forest and woodland history) - historical legacies of land use in landscapes and ecosystems - historic-ecological approaches and applications 5. Land change science: - modelling future land-use (CLUE, other scenario-based models) - landscape functions and services | |||||
Skript | Handouts will be available in the course and for download | |||||
Voraussetzungen / Besonderes | Basic Landscape Ecology courses at Bachelor level | |||||
701-1615-00L | Advanced Forest Pathology | W | 3 KP | 2G | T. N. Sieber | |
Kurzbeschreibung | In-depth understanding of concepts, insight into current research and experience with methods of Forest Pathology based on selected pathosystems. | |||||
Lernziel | To know current biological and ecological research on selected diseases, to be able to comment on it and to understand the methods. To understand the dynamics of selected pathosystems and disturbance processes. To be able to diagnose tree diseases and injuries. To know forest protection strategies and to be able to comment on them. | |||||
Inhalt | Stress and disease, virulence and resistance, disease diagnosis and damage assessment, tree disease epidemiology, disease management, ecosystem pathology. Systems (examples): Air pollution and trees, endophytic fungi, mycorrhiza, wood decay, conifer- root rot, Phytophthora diseases, chestnut canker and its hypoviruses, urban trees, complex diseases, emerging diseases | |||||
Skript | no script, the ppt-presentations and specific articles will be made available | |||||
Literatur | among others: Edmonds, R.L., Agee, J.K., Gara, R.I. (2000): Forest Health and protection. Boston: Mc Graw-hill. Lundquist, J.E., Hamelin, R.C. (2005): Forest Pathology. From genes to landscapes. St. Paul, Minnesota: APS-Press. Tainter, F.H., Baker, F.A. (1996): principles of Forest pathology. New York: Wiley. | |||||
Voraussetzungen / Besonderes | The course is composed of introductory lectures, practical work, discussions and reading. The participants should have basic knowledge in forest pathology (corresponding to the course 701-0563-00 "Wald- und Baumkrankheiten, see teaching book of H. Butin: Tree diseases and disorders, Oxford University Press 1995. 252 pp.). | |||||
701-1644-00L | Mountain Forest Hydrology | W | 5 KP | 3G | J. W. Kirchner | |
Kurzbeschreibung | This course presents a process-based view of the hydrology, biogeochemistry, and geomorphology of mountain streams. Students learn how to integrate process knowledge, data, and models to understand how landscapes regulate the fluxes of water, sediment, nutrients, and pollutants in streams, and to anticipate how streams will respond to changes in land use, atmospheric deposition, and climate. | |||||
Lernziel | Students will have a broad understanding of the hydrological, biogeochemical, and geomorphological functioning of mountain catchments. They will practice using data and models to frame and test hypotheses about connections between streams and landscapes. | |||||
Inhalt | Streams are integrated monitors of the health and functioning of their surrounding landscapes. Streams integrate the fluxes of water, solutes, and sediment from their contributing catchment area; thus they reflect the spatially integrated hydrological, ecophysiological, biogeochemical, and geomorphological processes in the surrounding landscape. At a practical level, there is a significant public interest in managing forested upland landscapes to provide a reliable supply of high-quality surface water and to minimize the risk of catastrophic flooding and debris flows, but the scientific background for such management advice is still evolving. Using a combination of lectures, field exercises, and data analysis, we explore the processes controlling the delivery of water, solutes, and sediment to streams, and how those processes are affected by changes in land cover, land use, and climate. We review the connections between process understanding and predictive modeling in these complex environmental systems. How well can we understand the processes controlling watershed-scale phenomena, and what uncertainties are unavoidable? What are the relative advantages of top-down versus bottom-up approaches? How much can "black box" analyses reveal about what is happening inside the black box? Conversely, can small-scale, micro-mechanistic approaches be successfully "scaled up" to predict whole-watershed behavior? Practical problems to be considered include the effects of land use, atmospheric deposition, and climate on streamflow, water quality, and sediment dynamics, illustrated with data from experimental watersheds in North America, Scandinavia, and Europe. | |||||
Skript | Handouts will be available as they are developed. | |||||
Literatur | Recommended and required reading will be specified at the first class session (with possible modifications as the semester proceeds). | |||||
Ökosystemmanagement | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
701-1631-00L | Foundations of Ecosystem Management | W | 5 KP | 3G | J. Ghazoul, C. Garcia | |
Kurzbeschreibung | This course introduces the broad variety of conflicts that arise in projects focusing on sustainable management of natural resources. It explores case studies of ecosystem management approaches and considers their practicability, their achievements and possible barriers to their uptake. | |||||
Lernziel | Students should be able to a) propose appropriate and realistic solutions to ecosystem management problems that integrate ecological, economic and social dimensions across relevant temporal and spatial scales. b) identify important stakeholders, their needs and interests, and the main conflicts that exist among them in the context of land and resource management. | |||||
Inhalt | Traditional management systems focus on extraction of natural resources, and their manipulation and governance. However, traditional management has frequently resulted in catastrophic failures such as, for example, the collapse of fish stocks and biodiversity loss. These failures have stimulated the development of alternative ‘ecosystem management’ approaches that emphasise the functionality of human-dominated systems. Inherent to such approaches are system-wide perspectives and a focus on ecological processes and services, multiple spatial and temporal scales, as well as the need to incorporate diverse stakeholder interests in decision making. Thus, ecosystem management is the science and practice of managing natural resources, biodiversity and ecological processes, to meet multiple demands of society. It can be local, regional or global in scope, and addresses critical issues in developed and developing countries relating to economic and environmental security and sustainability. This course provides an introduction to ecosystem management, and in particular the importance of integrating ecology into management systems to meet multiple societal demands. The course explores the extent to which human-managed terrestrial systems depend on underlying ecological processes, and the consequences of degradation of these processes for human welfare and environmental well-being. Building upon a theoretical foundation, the course will tackle issues in resource ecology and management, notably forests, agriculture and wild resources within the broader context of sustainability, biodiversity conservation and poverty alleviation or economic development. Case studies from tropical and temperate regions will be used to explore these issues. Dealing with ecological and economic uncertainty, and how this affects decision making, will be discussed. Strategies for conservation and management of terrestrial ecosystems will give consideration to landscape ecology, protected area systems, and community management, paying particular attention to alternative livelihood options and marketing strategies of common pool resources. | |||||
Skript | No Script | |||||
Literatur | Chichilnisky, G. and Heal, G. (1998) Economic returns from the biosphere. Nature, 391: 629-630. Daily, G.C. (1997) Nature’s Services: Societal dependence on natural ecosystems. Island Press. Washington DC. Hindmarch, C. and Pienkowski, M. (2000) Land Management: The Hidden Costs. Blackwell Science. Millenium Ecosystem Assessment (2005) Ecosystems and Human Well-being: Synthesis. Island Press, Washington DC. Milner-Gulland, E.J. and Mace, R. (1998) Conservation of Biological Resources. Blackwell Science. Gunderson, L.H. and Holling, C.S. (2002) Panarchy: understanding transformations in human and natural systems. Island Press. | |||||
701-1635-00L | Multifunktionales Waldmanagement | W | 5 KP | 2G | P. Rotach | |
Kurzbeschreibung | Multifunktionales Management von Waldökosystemen versucht, die natürlichen Ökosystemprozesse und -funktionen nachhaltig, naturnah, effizient und zielführend derart zu steuern, dass sie die verschiedenen Anforderungen möglichst optimal und langfristig erbringen können. Dieser Kurs vermittelt alle Kenntnisse und Grundlagen für diese Art des Waldmanagements | |||||
Lernziel | Wälder in dicht besiedelten Gebieten müssen meist gleichzeitig die verschiedensten Ökosystemleistungen und -güter erbringen. Multifunktionales Management von Waldökosystemen versucht daher, die natürlichen Ökosystemprozesse und -funktionen nachhaltig, naturnah, effizient und zielführend derart zu steuern, dass sie die verschiedenen Anforderungen möglichst optimal und langfristig erbringen können. Adaptivität an veränderte Bedingungen sowie die verschiedenen Skalaritäten der Dienstleistungen und Ökosystemgüter sind dabei von zentraler Bedeutung. Das Erkennen und Behandeln von Zielkonflikten sowie die Entwicklung alternativer Management-Varianten ist ebenso von Wichtigkeit. | |||||
Inhalt | Identifikation der Bedürfnisse für mehrdimensionale Waldökosystemgüter und -leistungen und ihre Umsetzung in Anforderungsprofile für Ökosystemstrukturen, -funktionen und -prozesse Verstehen der natürlichen Prozesse resp. ihre räumliche und zeitliche Dynamik in den wesentlichen europäischen Waldökosystemen Identifikation der kritischen, handlungsrelevanten Prozesse resp. Ökosystemzustände für die definierten Anforderungsprofile Entwicklung von Managementoptionen und -strategien und Beurteilung ihrer biologischen und ökonomischen Effizienz resp. ihrer Auswirkungen auf andere Waldökosystemgüter und -leistungen Anforderungen an ein modernes, multifunktionales Waldmanagement aus schweizerischer resp. zentraleuropäischer Sicht - Strategien und mögliche Lösungen | |||||
Skript | Kein Skript Vorlesungsfolien verfügbar | |||||
Literatur | Literaturempfehlungen werden in der Vorlesung abgegeben Ein Quellenverzeichnis zur Vorlesung kann heruntergeladen werden | |||||
Voraussetzungen / Besonderes | Dieser Kurs wird auf Deutsch gehalten In Ergänzung zur Vorlesung finden 4 ganztägige Exkursionen zum Thema "Klassische und naturopportune Pflegekonzepte" statt. Die Teilnahme an allen 4 Exkursionen ist Voraussetzung für die Erlangung der Kredite. Weitere Exkursionen zu den Betriebsarten Femelschlag, Plenterung und Dauerwald werden mangels anderer Möglichkeiten in einem Wahlfachkurs im FS angeboten. Diese 9 tägigen Exkursionen "AK des multifunktionalen Waldmanagements" sind als Ergänzung und Vertiefung dieser Vorlesung konzipiert und werden daher unbedingt empfohlen. | |||||
Entscheidungsfindung, Politik und Planung | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
701-1651-00L | Environmental Governance Maximale Teilnehmerzahl: 30 | W | 3 KP | 2G | E. Lieberherr, G. de Buren, R. Schweizer | |
Kurzbeschreibung | The course addresses environmental policies, focusing on new steering approaches, which are generally summarized as environmental governance. The course also provides students with tools to analyze environmental policy processes and assesses the key features of environmental governance by examining various practical environmental policy examples. | |||||
Lernziel | To understand how an environmental problem may (not) become a policy and explain political processes, using basic concepts and techniques from political science. To analyze the evolution as well as the key elements of environmental governance. To be able to identify the main challenges and opportunities for environmental governance and to critically discuss them with reference to various practical policy examples. | |||||
Inhalt | Improvements in environmental quality and sustainable management of natural resources cannot be achieved through technical solutions alone. The quality of the environment and the achievement of sustainable development strongly depend on human behavior and specifically the human uses of nature. To influence human behavior, we rely on public policies and other societal rules, which aim to steer the way humans use natural resources and their effects on the environment. Such steering can take place through government intervention alone. However, this often also involves governance, which includes the interplay between governmental and non-governmental actors, the use of diverse tools such as emission standards or financial incentives to steer actors' behavior and can occur at the local, regional, national or international level. In this course, we will address both the practical aspects of as well as the scientific debate on environmental governance. The course gives future environmental experts a strong basis to position themselves in the governance debate, which does not preclude government but rather involves a spectrum from government to governance. Key questions that this course seeks to answer: What are the core characteristics of environmental challenges from a policy perspective? What are key elements of 'environmental governance' and how legitimate and effective are these approaches in addressing persistent environmental challenges? | |||||
Skript | Lecture slides and additional course material will be provided on Moodle. | |||||
Literatur | We will mostly work with readings from the following books: - Carter, N. (2007). The politics of the environment: Ideas, activism, policy (2nd ed.). Cambridge: Cambridge University Press. - Hogl, K., Kvarda, E., Nordbeck, R., Pregernig, M. (Eds) (2012): Environmental Governance: The Challenge of Legitimacy and Effectiveness. Cheltenham: Edward Elgar Publishing Limited. | |||||
Voraussetzungen / Besonderes | A detailed course schedule will be made available at the beginning of the semester. During the lecture we will work with Moodle. We ask that all students register themselves on this platform before the lecture and to bring a laptop, tablet or smartphone to class, so that you can complete exercises using Moodle. We recommend that students have (a) three-years BSc education of a (technical) university; (b) successfully completed Bachelor introductory course to environmental policy (Entwicklungen nationaler Umweltpolitik (or equivalent)) and (c) familiarity with key issues in environmental policy and some fundamental knowledge of one social science or humanities discipline (political science, economics, sociology, history, psychology, philosophy) | |||||
Methoden und Werkzeuge | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
701-1673-00L | Environmental Measurement Laboratory | W | 5 KP | 4G | P. U. Lehmann Grunder, D. Or | |
Kurzbeschreibung | Measurements are the the sole judge of scientific truth and provide access to unpredictable information, enabling the characterization and monitoring of complex terrestrial systems. Based on lectures and field- and laboratory training the students learn to apply modern methods to determine forest inventory parameters and to measure subsurface properties and processes. | |||||
Lernziel | - explain functioning of sensors that are used for characterization of landscapes and terrestrial systems - select appropriate measurement methods and sampling design to quantify key variables and processes in the subsurface - deploy sensors in the field and maintain sensor network - interpret collected laboratory and field data and report main conclusions deduced from measurements | |||||
Inhalt | 1) Measurement Science: Measurement precision and accuracy; sensing footprint, sampling design and sampling errors, uncertainty reduction, spatial and temporal variability, sampling network design and information costs 2) Electronics: Basic introduction to electronic components, voltage and current measurements, A/D converters, power requirements, power consumption calculations, batteries, storage capacity, solar panels 3) Datalogging (Lecture): Data Logging, data transfer, storage, and sensing technologies; basic data logger programming; overview of soil sensor types and sensor calibration; including programming in the laboratory 4) Geophysical methods on Subsurface Characterization: Basic principles of ERT, GPR, and EM; 5) Soil and Groundwater Direct Sampling (Lab): Soil physical sampling; profile characterization, disturbed and undisturbed soil sampling, direct-push geoprobe sampling; soil water content profiles and transects; 6) Electronics Laboratory: Setup and measurement of simple circuits, selection and use of voltage dividers, batteries and solar panels; pressure and temperature measurements; 7) Deployment of monitoring network: Field installation of TDR, temperature probes, tensiometers, data loggers and power supply 8) Geophysics lab: Demonstration and application of geophysical methods in the field; 9 & 10) Forest characterization/ inventory: Principles of LIDAR; structures and features of the tree crowns, size/volume of the leaf area tree positions and diameters at breast height 11&12) Ecohydrological and Soil Monitoring Networks- Data management for long term monitoring networks Tereno, and other critical zone observatories 13) Remote Sensing- Basic principles and forest-related examples including data extraction and analysis | |||||
Skript | Lecture material on page | |||||
Literatur | Lecture material will be online for registered students: http://www.step.ethz.ch/education/environmental-measurement-lab.html | |||||
Voraussetzungen / Besonderes | The details of the schedule will be optimized based on the number of students; some blocks of the course will be offered as well to students of Environmental Engineering | |||||
701-1679-00L | Spatial Modelling: From Climate & Land Use Change to Biodiversity Conservation | W | 5 KP | 3G | L. Pellissier, N. Zimmermann | |
Kurzbeschreibung | The course provides the student with the spatial tools to address societal challenges toward ensuring the sustainable use of terrestrial ecosystems and the conservation of biodiversity. Students learn theory, tools and models during a few introductory sessions and apply this knowledge to solve a practical problem in groups related to climate change, land use change and biodiversity conservation. | |||||
Lernziel | Students learn: - Theoretical foundations of the species ecological niche - Biodiversity concepts and global change impacts - Basic concepts of spatial (& macro-) ecology - Environmental impact assessment and planning - Advanced statistical methods (GLM, GAM, CART) and basic programming (loops, functions, advanced scripting) in the statistical environment R. - The use of GIS functionality in R | |||||
Inhalt | 1. The basics: Introduction to the concept of the ecological niche, and biodiversity theories. Overview of the knowledge on expected biodiversity response to global changes and conservation planning methods. Introduction to the statistical methods of Generalized Linear (GLM) and Generalized Additive models (GAM), and Classification and Regression Trees (CART). Introduction to basic GIS and programming elements in the statistical environment R. 2. The class project: Students form groups of two, and each group solves a series of applied questions independently in R using the techniques taught in the introductory classes. The students then prepare a presentation and report of the obtained results that will be discussed during a mini-symposium. Each team choses one of the following topics for the class project: a) Linking climate change velocities to species' migration capacities b) Explaining and modelling land use change in Switzerland c) Explaining and modelling biodiversity changes in Switzerland d) Designing biodiversity conservation strategies under global changes. | |||||
Voraussetzungen / Besonderes | Basic knowledge in statistics (OLS regression, test statistics), and basic knowledge in geographic information science. | |||||
Wahlfächer | ||||||
Ökosystemmanagement | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
701-1453-00L | Ecological Assessment and Evaluation | W | 3 KP | 3G | F. Knaus | |
Kurzbeschreibung | The course provides methods and tools for ecological evaluations dealing with nature conservation or landscape planning. It covers census methods, ecological criteria, indicators, indices and critically appraises objectivity and accuracy of the available methods, tools and procedures. Birds and plants are used as main example guiding through different case studies. | |||||
Lernziel | Students will be able to: 1) critically consider biological data books and local, regional, and national inventories; 2) evaluate the validity of ecological criteria used in decision making processes; 3) critically appraise the handling of ecological data and criteria used in the process of evaluation 4) perform an ecological evaluation project from the field survey up to the descision making and planning. | |||||
Skript | Powerpoint slides are available on the webpage. Additional documents are handed out as copies. | |||||
Literatur | Basic literature and references are listed on the webpage. | |||||
Voraussetzungen / Besonderes | The course structure changes between lecture parts, seminars and discussions. The didactic atmosphere is intended as working group. Prerequisites for attending this course are skills and knowledge equivalent to those taught in the following ETH courses: - Pflanzen- und Vegetationsökologie - Systematische Botanik - Raum- und Regionalentwicklung - Naturschutz und Naturschutzbiologie | |||||
701-1661-00L | Conservation and Development in Complex Landscapes | W | 3 KP | 6G | C. Garcia, J. Ghazoul | |
Kurzbeschreibung | The field course in Belize will develop an understanding of, and solutions to, issues of landscape management relevant to conservation and natural resources. Students will be expected to integrate skills in quantitative natural science with social science approaches in real world, and hence highly complex, settings. | |||||
Lernziel | To address complex multi-dimensional environmental problems through the application of interdisciplinary and transdisciplinary skills. | |||||
Inhalt | Day 1: Ecology of the forest habitats A first impression of the biology of the region will be gained through an exploration of the different forest formations, ranging from mesic forests to dry evergreen, dry deciduous, and mangrove forests. The learning objective will be to understand the underlying environmental conditions that determine forest formations within the relatively small area of Shipstern Reserve. This includes linking climate, soil, and geology with community processes to understand the mosaic of habitat types, their distribution, form, and function. Day 2: The ecology of natural resources Students will begin to explore how people use forest resources, ranging from timber, to a variety of non-timber forest products, and animals for hunting. This will lead to an evaluation of threats to species and habitats, and hence set the scene for subsequent work. Day 3: Familiarisation with landscape scale dynamics We will explore the land uses in the landscape in the vicinity of Shipstern and Freshwater creeks. This will encompass a range of land uses, including small scale to large scale agriculture, extractive forest reserves, and protected forests. In the process the students will gain a better understanding of the pressures on land and forests, and a chance to meet some of the local stakeholders involved in land use transformations. Days 4 & 5: Problem conceptualisation Working with reserve managers and local stakeholders the students will develop a conceptual understanding of the key problems in the region, including the underlying drivers of change. Days 6-9: Integrative analysis Students, working in small groups, will analyse selected natural resource problems in greater depth. Options include biodiversity responses to habitat fragmentation, conservation management of mangrove and coral reef systems, restoration ecology, community forest management, and tourism development, among others. Students will have opportunities to collect original data across natural and social sciences, and will use different modelling approaches to explore future development trajectories. Day 10-11: Synthesis and presentation of results Research will be synthesised and presented to the local management community of Shipstern and Freshwater Creek reserves. The course will conclude with an afternoon allocated to discussion and debriefing, including an appraisal of the challenges of addressing natural resource management issues in complex socioecological systems, and the lessons learned. | |||||
Voraussetzungen / Besonderes | Foundations of Ecosystem Management | |||||
701-1663-00L | Exploring Resilience of Tropical Forest Landscapes Findet dieses Semester nicht statt. Dieser Kurs findet alternierend statt zu der Lehrveranstaltung 701-1661-00 Conservation and Development in Complex Landscapes. | W | 4 KP | 9G | ||
Kurzbeschreibung | A highly interactive learning experience with real world exposure to the challenges associated with conservation and management of tropical forest systems. Designed as a complementary course to Rain Forest Ecology 701-0324-00L. Students will gain first-hand experience of tropical forest landscapes and the challenges associated with conducting ecological research in this fascinating environment. | |||||
Lernziel | The course will have four core learning objectives: 1) provide students with an understanding and experience of a range of tropical rainforest systems, and an appreciation of the challenges of managing these landscapes to provide multiple ecosystem services. 2) To develop their creative and critical scientific thinking and experimental design in the context of tropical field ecology. Specifically through design and implementation an Adaptive Management approach to tropical forest landscapes. 3) Students will develop their understanding of multiple stakeholders perspectives in the context of landscape management in SE Asian develop the knowledge to discuss this issues with experts in the field. Students will present their Adaptive Management Plans to senior Forest Researchers in the forest department at the FRC Sabah and engage in dialogue regarding diverse perspectives in forest and landscape management. 4) To develop their team building skills to work in culturally diverse groups and under sometimes challenging conditions to work toward a common research goal. | |||||
Inhalt | Proposed topics to be covered within the scope of the projects and based upon the expertise of the course lecturers: Tropical Ecology, Forest Ecology and Forest Botany. Tropical Forest management and restoration. Conservation biology, Animal behaviour, tropical entomology. Biodiversity and ecosystem function. Resilience and Adaptive Management. | |||||
Literatur | Literature presented in Tropical Rainforest Ecology | |||||
Voraussetzungen / Besonderes | 701-0324-00 G Rain Forest Ecology | |||||
Methoden und Werkzeuge | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
701-1316-00L | Physical Transport Processes in the Natural Environment | W | 3 KP | 2G | J. W. Kirchner | |
Kurzbeschreibung | Fluid flows transport all manner of biologically important gases, nutrients, toxins, contaminants, spores and seeds, as well as a wide range of organisms themselves. This course explores the physics of fluids in the natural environment, with emphasis on the transport, dispersion, and mixing of solutes and entrained particles, and their implications for biological and biogeochemical processes. | |||||
Lernziel | Students will learn key concepts of fluid mechanics and how to apply them to environmental problems. Weekly exercises based on real-world data will develop core skills in analysis, interpretation, and problem-solving. | |||||
Inhalt | dimensional analysis, similarity, and scaling solute transport in laminar and turbulent flows transport and dispersion in porous media transport of sediment (and adsorbed contaminants) by air and water anomalous dispersion | |||||
Skript | The course is under development. Lecture materials will be distributed as they become available. | |||||
701-1677-00L | Quantitative Vegetation Dynamics: Models from Tree to Globe | W | 3 KP | 3G | H. Bugmann, M. Huber, H. Lischke | |
Kurzbeschreibung | This course provides hands-on experience with models of vegetation dynamics across temporal and spatial scales. The underlying principles, assets and trade-offs of the different approaches are introduced, and students work in a number of small projects with these models to gain first-hand experience. | |||||
Lernziel | Students will - be able to understand, assess and evaluate the fundamental properties of dynamic systems using vegetation models as case studies - obtain an overview of dynamic modelling techniques from the individual plant to the global level - understand the basic assumptions of the various model types, which dictate the skill and limitations of the respective model - be able to work with such model types on their own - appreciate the methodological basis for impact assessments of future climate change and other environmental changes on ecosystems. | |||||
Inhalt | Models of individuals - Deriving single-plant models from inventory measurements - Plant models based on 'first principles' Models at the stand scale - Simple approaches: matrix models - Competition for light and other resources as central mechanisms - Individual-based stand models: distance-dependent and distance-independent Models at the landscape scale - Simple approaches: cellular automata - Dispersal and disturbances (windthrow, fire, bark beetles) as key mechanisms - Landscape models Global models - Sacrificing local detail to attain global coverage: processes and entities - Dynamic Global Vegetation Models (DGVMs) - DGVMs as components of Earth System Models | |||||
Skript | Handouts will be available in the course and for download | |||||
Literatur | Will be indicated at the beginning of the course | |||||
Voraussetzungen / Besonderes | - Basic training in modelling and systems analysis - Good knowledge of general ecology, vegetation dynamics, and forest systems | |||||
701-1682-00L | Dendroecology | W | 3 KP | 3G | C. Bigler, A. Rigling, K. Treydte | |
Kurzbeschreibung | Der Kurs Dendroökologie vermittelt theoretische und praktische Aspekte der Dendrochronologie. Die Bedeutung verschiedener Umwelteinflüsse auf Jahrringmerkmale wird aufgezeigt. Die Studierenden lernen unterschiedliche Methoden, um Jahrringe zu datieren und sie verstehen, wie ökologische und umweltbedingte Prozesse und Muster mit Hilfe von Jahrringen rekonstruiert werden können. | |||||
Lernziel | Die Studierenden... - verstehen, wie Holz aufgebaut ist und wie Jahrringstrukturen gebildet werden. - können verschiedene Jahrringmerkmale erkennen und beschreiben. - verstehen die theoretischen und praktischen Aspekte der Datierung von Jahrringen. - lernen Effekte unterschiedlicher abiotischer und biotischer Umwelteinflüsse (Klima, Standort, Konkurrenz, Insekten, Feuer, physikalisch-mechanische Einwirkungen) auf Bäume und Jahrringe kennen. - entdecken ein Werkzeug, um Prozesse der globalen Umweltveränderungen zu verstehen und zu rekonstruieren. - lernen Software für die Datierung, Standardisierung und Analyse von Jahrringen kennen. - erhalten praktische Erfahrungen durch die Veranschaulichung mit Hölzern (Bohrkerne, Stammscheiben, Keile), durch Probenahme im Feld und eigenes Messen und Datieren von Jahrringen im Jahrringlabor. - lösen R-basierte Übungen (R Tutorial wird angeboten) und beantworten Fragen in Moodle. - erarbeiten eine eigenständige Fragestellung zu einem dendroökologischen Thema und schreiben eine kurze Literaturarbeit basierend auf wissenschaftlichen Artikeln. | |||||
Inhalt | - Übersicht und Geschichte der Dendrochronologie - Prinzipien der Dendrochronologie - Evolution von Jahrringen - Bildung und Struktur von Holz und Jahrringen - Intra-saisonales Jahrringwachstum - Kontinuierliche und diskontinuierliche Jahrringmerkmale - Probenentnahme und Messung - Kreuzdatierungsmethoden (visuell, Skeleton Plots, quantitativ) - Standardisierung von Jahrringkurven - Entwicklung von Jahrring-Chronologien - Dendrogeomorphologie, Dendrohydrologie, Dendroglaziologie - Stabile Isotopen - Klima, Klima-Wachstumsbeziehungen, Klimarekonstruktionen - Alters- und Grössenstrukturen, Walddynamik (Verjüngung, Wachstum, Konkurrenz, Mortalität) - Störungsökologie (Feuer, Insekten, Windwurf) - Einsatz der Jahrringforschung in der Praxis und in interdisziplinären Forschungsprojekten - Feld- und Labortag (Datum für einen ganzen Tag oder zwei Halbtage wird gemeinsam zu Beginn des Semesters mit den Studierenden gesucht): Besprechung von dendroökologischen Fragestellungen im Wald; Beprobung von Bäumen; Einblick in verschiedene Jahrringprojekte im Labor (Eidgenössische Forschungsanstalt für Wald Schnee und Landschaft WSL) | |||||
Skript | Skripte (in Englisch) werden in der Vorlesung abgegeben. Die Skripte sowie weitere Dokumente (Papers, Software) können nach Einschreibung im Kurs auch auf Moodle (https://moodle-app2.let.ethz.ch) runtergeladen werden. | |||||
Literatur | Literaturlisten werden in der Vorlesung verteilt. | |||||
Voraussetzungen / Besonderes | Zeitplan (total 90 Stunden): Es finden 12 Doppelstunden Vorlesung statt (total 24 Stunden Präsenzzeit) sowie ein Feld- und Labortag (8 Stunden Präsenzzeit). Zusätzlich wird von den Studierenden 18 Stunden für die Vor- und Nachbearbeitung der Vorlesungen sowie 18 Stunden für die Übungen erwartet. Für die Laborarbeit sind 4 Stunden und für das Projekt 18 Stunden reserviert. Die Unterrichtssprache ist Deutsch und Englisch, auf Wunsch nur Englisch. Voraussetzungen: Grundlagen der Biologie, Ökologie und Waldökologie | |||||
701-1776-00L | Geographic Data Processing with Python and ArcGIS | W | 1 KP | 2U | A. Baltensweiler | |
Kurzbeschreibung | The course communicates the basics of the programming language Python and gives a general introduction into the geoprocessing framework of ArcGIS. In addition various Python libraries (numyp, Scipy, GDAL, statsmodels, pandas) will be introduced which increase the functional range of the geoprocessing framework substantially. | |||||
Lernziel | The students learn the basics of geographic data processing based on the programming language Python and ArcGIS (arcpy). They get the ability to implement their own processing sequences and models for geoprocessing. The students are able to integrate open source libraries in their python scripts and know how the libraries are applied to spatial datasets. | |||||
Inhalt | The course communicates a deepened understanding of the geoprocessing frameworks arcpy and covers basic language concepts of Python such as datatypes, control structures and functions. In addition the application of popular Python libraries in combination with spatial datasets will be shown. | |||||
Skript | Lecture notes, exercises and worked out solutions to them will be provided. | |||||
Literatur | Lutz M. (2013): Learning Python, 5th Edition, O'Reilly Media De Smith M., Goodchild, M.F., Longley, P. A. (2006): Geospatial Analysis, Troubador Publishing Ltd. Zandbergen P. A. (2014): Python Scripting for ArcGIS. Esri Press. Allen, D. A. (2014): GIS Tutorial for Python Scripting. ESRI Press. | |||||
Voraussetzungen / Besonderes | Some basic knowledge of ArcGIS is assumed. | |||||
401-0627-00L | Smoothing and Nonparametric Regression with Examples | W | 4 KP | 2G | S. Beran-Ghosh | |
Kurzbeschreibung | Starting with an overview of selected results from parametric inference, kernel smoothing (including local polynomials) will be introduced along with some asymptotic theory, optimal bandwidth selection, data driven algorithms and some special topics. Examples from environmental research will be used for motivation, but the methods will also be applicable elsewhere. | |||||
Lernziel | The students will learn about methods of kernel smoothing and application of concepts to data. The aim will be to build sufficient interest in the topic and intuition as well as the ability to implement the methods to various different datasets. | |||||
Inhalt | Rough Outline: - Parametric estimation methods: selection of important results o Maximum likelihood o Least squares: regression & diagnostics - Nonparametric curve estimation o Density estimation, Kernel regression, Local polynomials, Bandwidth selection o Selection of special topics (as time permits, we will cover as many topics as possible) such as rapid change points, mode estimation, robust smoothing, partial linear models, etc. - Applications: potential areas of applications will be discussed such as, change assessment, trend and surface estimation, probability and quantile curve estimation, and others. | |||||
Skript | Brief summaries or outlines of some of the lecture material will be posted at http://www.wsl.ch/info/mitarbeitende/ghosh/index_EN (click on "ETH Course" in the left panel). NOTE: The posted notes will tend to be just sketches whereas only the in-class lessons will contain complete information. LOG IN: In order to have access to the posted notes, you will need the course user id & the password. These will be given out on the first day of the lectures. | |||||
Literatur | References: - Statistical Inference, by S.D. Silvey, Chapman & Hall. - Regression Analysis: Theory, Methods and Applications, by A. Sen and M. Srivastava, Springer. - Density Estimation, by B.W. Silverman, Chapman and Hall. - Kernel Smoothing, by M.P. Wand and M.C. Jones, Chapman and Hall. - Local polynomial modelling and its applications, by J. Fan and I. Gijbels, Chapman & Hall. - Nonparametric Simple Regression, by J. Fox, Sage Publications. - Applied Smoothing Techniques for Data Analysis: the Kernel Approach With S-Plus Illustrations, by A.W. Bowman, A. Azzalini, Oxford University Press. Additional references will be given out in the lectures. | |||||
Voraussetzungen / Besonderes | Prerequisites: A background in Linear Algebra, Calculus, Probability & Statistical Inference including Estimation and Testing. | |||||
Kolloquium | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
701-1691-00L | Kolloquium Wald- und Landschaftsmanagement | Z | 0 KP | 1.5K | H. Bugmann | |
Kurzbeschreibung | Kolloquium zu Themen des Wald- und Landschaftsmanagement | |||||
Lernziel | Diese Veranstaltung bereitet Informationen aus der aktuellen Forschung so auf, dass sie für Stakeholder relevant und in die praktische Waldbewirtschaftung integrierbar sind. Sie ist eine Austausch-Plattform zwischen Forschung und Praxis im Waldbereich der Schweiz. | |||||
Skript | nicht verfügbar | |||||
Literatur | wird angegeben, so weit sinnvoll |
- Seite 1 von 1