Suchergebnis: Katalogdaten im Herbstsemester 2017
Bauingenieurwissenschaften Master | ||||||
1. Semester | ||||||
Seminararbeit (obligatorisch für alle Vertiefungen) | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
101-0007-00L | Project Management for Construction Projects | O | 4 KP | 3S | B. T. Adey, J. J. Hoffman | |
Kurzbeschreibung | This course is designed to lay down the foundation of the different concepts, techniques, and tools for successful project management of construction projects. | |||||
Lernziel | The goal is that at the end of this course students should have a good understanding of the different project management knowledge areas, the phases required for successful project management, and the role of a project manager. To demonstrate this, students will work in groups in different case studies to apply the concepts, tools and techniques presented in the class. Two 4 hours sessions towards the end of the lecture series will introduce a practical project to allow the teams to demonstrate the tools and techniques learned during the semester. | |||||
Inhalt | The main content of the course is summarized in the following topics: - Project and organization structures - Project scheduling - Resource management - Project estimating - Project financing - Risk management - Project Reporting - Interpersonal skills | |||||
Skript | The slides for the class will be available for download from Moodle at least one day before each class. Copies of all necessary documents will be distributed at appropriate times. | |||||
Literatur | Relevant readings will be recommended throughout the course (and made available to the students via Moodle). | |||||
Vertiefungsfächer | ||||||
Vertiefung in Bau- und Erhaltungsmanagement | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
066-0415-00L | Building Physics: Theory and Applications | W | 4 KP | 3V + 1U | J. Carmeliet, J. Allegrini, D. Derome | |
Kurzbeschreibung | Principles of heat and mass transport, hygro-thermal performance, durability of the building envelope and interaction with indoor and outdoor climates, applications. | |||||
Lernziel | The students will acquire in the following fields: - Principles of heat and mass transport and its mathematical description. - Indoor and outdoor climate and driving forces. - Hygrothermal properties of building materials. - Building envelope solutions and their construction. - Hygrothermal performance and durability. | |||||
Inhalt | Principles of heat and mass transport, hygro-thermal performance, durability of the building envelope and interaction with indoor and outdoor climates, applications. | |||||
529-0193-00L | Renewable Energy Technologies I Findet dieses Semester nicht statt. Die Lerneinheiten Renewable Energy Technologies I (529-0193-00L, im HS) und Renewable Energy Technologies II (529-0191-01L, im FS) können unabhängig voneinander besucht werden. | W | 4 KP | 3G | A. Wokaun, A. Steinfeld | |
Kurzbeschreibung | Scenarios for world energy demand and CO2 emissions, implications for climate. Methods for the assessment of energy chains. Potential and technology of renewable energies: Biomass (heat, electricity, biofuels), solar energy (low temp. heat, solar thermal and photovoltaic electricity, solar chemistry). Wind and ocean energy, heat pumps, geothermal energy, energy from waste. CO2 sequestration. | |||||
Lernziel | Scenarios for the development of world primary energy consumption are introduced. Students know the potential and limitations of renewable energies for reducing CO2 emissions, and their contribution towards a future sustainable energy system that respects climate protection goals. | |||||
Inhalt | Scenarios for the development of world energy consumption, energy intensity and economic development. Energy conversion chains, primary energy sources and availability of raw materials. Methods for the assessment of energy systems, ecological balances and life cycle analysis of complete energy chains. Biomass: carbon reservoirs and the carbon cycle, energetic utilisation of biomass, agricultural production of energy carriers, biofuels. Solar energy: solar collectors, solar-thermal power stations, solar chemistry, photovoltaics, photochemistry. Wind energy, wind power stations. Ocean energy (tides, waves). Geothermal energy: heat pumps, hot steam and hot water resources, hot dry rock (HDR) technique. Energy recovery from waste. Greenhouse gas mitigation, CO2 sequestration, chemical bonding of CO2. Consequences of human energy use for ecological systems, atmosphere and climate. | |||||
Skript | Lecture notes will be distributed electronically during the course. | |||||
Literatur | - Kaltschmitt, M., Wiese, A., Streicher, W.: Erneuerbare Energien (Springer, 2003) - Tester, J.W., Drake, E.M., Golay, M.W., Driscoll, M.J., Peters, W.A.: Sustainable Energy - Choosing Among Options (MIT Press, 2005) - G. Boyle, Renewable Energy: Power for a sustainable futureOxford University Press, 3rd ed., 2012, ISBN: 978-0-19-954533-9 -V. Quaschning, Renewable Energy and Climate ChangeWiley- IEEE, 2010, ISBN: 978-0-470-74707-0, 9781119994381 (online) | |||||
Voraussetzungen / Besonderes | Fundamentals of chemistry, physics and thermodynamics are a prerequisite for this course. Topics are available to carry out a Project Work (Semesterarbeit) on the contents of this course. | |||||
066-0427-00L | Design and Building Process MBS | W | 2 KP | 2V | A. Paulus, S. Menz | |
Kurzbeschreibung | "Design and Building Process MBS" is a brief manual for prospective architects and engineers covering the competencies and the responsibilities of all involved parties through the design and building process. Lectures on twelve compact aspects gaining importance in a increasingly specialised, complex and international surrounding. | |||||
Lernziel | Participants will come to understand how they can best navigate the design and building process, especially in relation to understanding their profession, gaining a thorough knowledge of rules and regulations, as well as understanding how involved parties' minds work. They will also have the opportunity to investigate ways in which they can relate to, understand, and best respond to their clients' wants and needs. Finally, course participants will come to appreciate the various tools and instruments, which are available to them when implementing their projects. The course will guide the participants, bringing the individual pieces of knowledge into a superordinate relationship. | |||||
Inhalt | "Design and Building Process MBS" is a brief manual for prospective architects and engineers covering the competencies and the responsibilities of involved parties through the design and building process. Twelve compact aspects regarding the establishe building culture are gaining importance in an increasingly specialised, complex and international surrounding. Lectures on the topics of profession, service model, organisation, project, design quality, coordination, costing, tendering and construction management, contracts and agreements, life cycle, real estate market, and getting started will guide the participants, bringing the individual pieces of knowledge into a superordinate relationship. The course introduces the key figures, depicts the criteria of the project and highlights the proveded services of the consultants. In addition to discussing the basics, the terminologies and the tendencies, the lecture units will refer to the studios as well as the prctice: Teaching-based case studies will compliment and deepen the understanding of the twelve selected aspects. The course is presented as a moderated seminar to allow students the opportunity for invididual input: active cololaboration between the students and their tutor therefore required. | |||||
101-0427-01L | Public Transport Design and Operations Remark: Former title until HS16 "System- und Netzplanung ". | W | 6 KP | 4G | F. Corman, V. De Martinis | |
Kurzbeschreibung | This course aims at analyzing, designing, improving public transport systems, as part of the overall transport system. | |||||
Lernziel | Public transport is a key driver for making our cities more livable, clean and accessible, providing safe, and sustainable travel options for millions of people around the globe. Proper planning of public transport system also ensures that the system is competitive in terms of speed and cost. Public transport is a crucial asset, whose social, economic and environmental benefits extend beyond those who use it regularly; it reduces the amount of cars and road infrastructure in cities; reduces injuries and fatalities associated to car accidents, and gives transport accessibility to very large demographic groups. Goal of the class is to understand the main characteristics and differences of public transport networks. Their various performance criteria based on various perspective and stakeholders. The most relevant decision making problems in a planning tactical and operational point of view At the end of this course, students can critically analyze existing networks of public transport, their design and use; consider and substantiate possible improvements to existing networks of public transport and the management of those networks; optimize the use of resources in public transport. General structure: general introduction of transport, modes, technologies, system design and line planning for different situations, mathematical models for design and line planning timetabling and tactical planning, and related mathematical approaches operations, and quantitative support to operational problems, evaluation of public transport systems. | |||||
Inhalt | Basics for line transport systems and networks Passenger/Supply requirements for line operations Objectives of system and network planning, from different perspectives and users, design dilemmas Conceptual concepts for passenger transport: long-distance, urban transport, regional, local transport Planning process, from demand evaluation to line planning to timetables to operations Matching demand and modes Line planning techniques Timetabling principles Allocation of resources Management of operations Measures of realized operations Improvements of existing services | |||||
Skript | Lecture slides are provided. | |||||
Literatur | Ceder, Avi: Public Transit Planning and Operation, CRC Press, 2015, ISBN 978-1466563919 (English) Holzapfel, Helmut: Urbanismus und Verkehr – Bausteine für Architekten, Stadt- und Verkehrsplaner, Vieweg+Teubner, Wiesbaden 2012, ISBN 978-3-8348-1950-5 (Deutsch) Hull, Angela: Transport Matters – Integrated approaches to planning city-regions, Routledge / Taylor & Francis Group, London / New York 2011, ISBN 978-0-415-48818-4 (English) Vuchic, Vukan R.: Urban Transit – Operations, Planning, and Economics, John Wiley & Sons, Hoboken / New Jersey 2005, ISBN 0-471-63265-1 (English) Walker, Jarrett: Human Transit – How clearer thinking about public transit can enrich our communities and our lives, ISLAND PRESS, Washington / Covelo / London 2012, ISBN 978-1-59726-971-1 (English) White, Peter: Public Transport - Its Planning, Management and Operation, 5th edition, Routledge, London / New York 2009, ISBN 978-0415445306 (English) | |||||
101-0522-00L | Introduction to Construction Information Management & Modelling Findet dieses Semester nicht statt. | W+ | 3 KP | 2G | Noch nicht bekannt | |
Kurzbeschreibung | This course will provide both a theoretical background and a pragmatic project work (case studies) on current trends and developments of information modeling and management in the construction industry around the world and in Switzerland. The course will include external lecturers from engineering and construction companies in Switzerland. | |||||
Lernziel | Students enrolled in this course are expected to become familiar with current information modeling and management technologies and their applications to the construction industry, and to get a good understanding of new project delivery systems and technologies for integrated practice. | |||||
Inhalt | The content of the course is summarized in the following topics: - Introduction to information modeling and management technologies - Integrated Project Delivery (IPD) (vs. traditional delivery methods) - Information model execution plan - Information modeling tools and parametric modeling - Interoperability - Standards and foundations - Implications for engineers and the construction industry - Implications for owners and facility managers - Information Modeling and Prefabrication - Construction Analysis and Planning (4D modeling) - Quantity Takeoff and Cost Estimating (5D modeling) | |||||
Skript | The slides for the class will be available for download from Moodle at least one day before each class. Copies of all necessary documents will be distributed at appropriate times. | |||||
Literatur | Relevant readings will be recommended throughout the course and made available to the students via Moodle. | |||||
Voraussetzungen / Besonderes | There are no pre-requisites to enroll in this course. Note: the use of special software (e.g. Revit, ArchiCAD) or simulation software (e.g., Bentley ConstrucSim, Navisworks, Solibri Model Checker, etc.) is beyond the scope of this course. | |||||
101-0509-00L | Infrastructure Management 1: Process Remark: Former Title "Infrastructure Management Systems". | W+ | 4 KP | 3G | B. T. Adey | |
Kurzbeschreibung | The course provides an introduction to the steps included in the infrastructure management process. The lectures are given by a mixture of external people in German and internal people in English. | |||||
Lernziel | Upon completion of the course, students will - understand the steps required to manage infrastructure effectively, - understand the complexity of these steps, and - have an overview of the tools that they can use in each of the steps. | |||||
Inhalt | - The infrastructure management process and guidelines - Knowing the infrastructure - Dealing with data - Establishing goals and constraints - Establishing organization structure and processes - Making predictions - Selecting strategies - Developing programs - Planning interventions - Conducting impact analysis - Reviewing the process | |||||
Skript | Appropriate reading / and study material will be handed out during the course. Transparencies will be handed out at the beginning of each class. | |||||
Literatur | Appropriate literature will be handed out when required. | |||||
101-0517-10L | Baubetrieb im Untertagbau | W | 3 KP | 2G | H. Ehrbar | |
Kurzbeschreibung | Bauverfahren für konventionelle Vortriebe im Lockermaterial und im Fels (Tunnel-, Schacht- und Kavernenbau) -Bauverfahren für maschinellen Vortrieb -Entscheidungskriterien für die Wahl der Vortriebsmethoden -Baustelleneinrichtungen, Logistik und Analyse des Baubetriebs | |||||
Lernziel | Vermittlung praxisnaher Kenntnisse bezüglich -Auswahl der Bauverfahren -Arbeitszyklen und Ausführung im konventionellen und maschinellen Vortrieb, inkl. Materialbewirtschaftung -Ausführungskontrollen und Überwachung -Anforderungen der Arbeitssicherheit, Gesundheitsschutz und Umweltschutz -Leistungsermittlung, Termin- und Kostenplanung -Erhaltungsmassnahmen Die Studierenden werden befähigt, ein Untertagbauprojekt in der Phase Bauprojekt als Planer (unter Berücksichtigung unternehmerischer Überlegungen) zu bearbeiten. | |||||
Inhalt | Allgemeine Grundlagen -SIA 196, SIA 197, SIA 198, SIA 118/198 -Kenntnis der Vortriebsmethoden -Entscheidungsgrundlagen zur Wahl der Vortriebsmethode -Baustellenlogistik (Transporte, Lüftung, Kühlung, Wasser, Materialbewirtschaftung) -Werkstoffe Konventioneller Vortrieb -Ausbruchmethoden (Vollausbruch / Teilausbruch) -Ausbruchsicherung -Abdichtung -Innengewölbe Maschineller Vortrieb -Offener Vortrieb (Gripper-TBM), Ausbruchsicherungskonzepte -Schildvortriebe Innenausbau -Abdichtung und Entwässerung -Innengewölbe -Bankette BIM im Tunnelbau -Überblick über den derzeitigen Stand und künftige Entwicklungsschritte | |||||
Skript | Vorlesungsfolien | |||||
Literatur | Im Rahmen der Vorlesung wird auf die gängige Fachliteratur hingewiesen | |||||
Vertiefung in Geotechnik | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
101-0317-00L | Untertagbau I | W+ | 3 KP | 2G | G. Anagnostou, E. Pimentel | |
Kurzbeschreibung | Vermittlung grundlegender Aspekte der Statik und Konstruktion im Untertagbau. Aufzeigen von verschiedenen Ausbruchsmethoden sowie Sicherungs- und Bauhilfsmassnahmen unter Berücksichtigung geologischer, statischer und ausführungstechnischer Gesichtspunkte. | |||||
Lernziel | Vermittlung grundlegender Aspekte der Statik und Konstruktion im Untertagbau. Aufzeigen von verschiedenen Ausbruchsmethoden sowie Sicherungs- und Bauhilfsmassnahmen unter Berücksichtigung geologischer, statischer und ausführungstechnischer Gesichtspunkte. | |||||
Inhalt | Grundlagen und Anwendungen numerischer Methoden in der Tunnelstatik Ausbruchsmethoden (Bau- und Betriebsweisen) Sicherungs- und Bauhilfsmassnahmen: - Injektionen - Jet Grouting - Gefrierverfahren - Wasserhaltung - Rohrschirme - Brustanker | |||||
Skript | Autographieblätter | |||||
Literatur | Empfehlungen | |||||
101-0357-00L | Theoretical and Experimental Soil Mechanics Prerequisites: Mechanics I, II and III. The number of participants is limited to 60 due to the existing laboratory equipment! Students with major in Geotechnical Engineering have priority. Registrations will be accepted in the order they are received. | W+ | 6 KP | 4G | I. Anastasopoulos, O. Adamidis, R. Herzog | |
Kurzbeschreibung | Overview of soil behaviour Explanation of typical applications: reality, modelling, laboratory tests with transfer of results to the practical examples Consolidation theory and typical applications in practice Triaxial & direct shear tests: consolidation & shear, drained & undrained response Plasticity theory & Critical State Soil Mechanics, Cam Clay Application of plasticity theory | |||||
Lernziel | Extend knowledge of theoretical approaches that can be used to describe soil behaviour to enable students to carry out more advanced geotechnical design and to plan the appropriate laboratory tests to obtain relevant parameters for coupled plasticity models of soil behaviour. A further goal is to give students the wherewithal to be able to select an appropriate constitutive model and set up insitu stress conditions in preparation for subsequent numerical modelling (e.g. with finite elements). | |||||
Inhalt | Overview of soil behaviour Discussion of general gaps between basic theory and soil response Stress paths in practice & in laboratory tests Explanation of typical applications: reality, modelling, laboratory tests with transfer of results to the practical examples Consolidation theory for incremental and continuous loading oedometer tests and typical applications in practice Triaxial & direct shear tests: consolidation & shear, drained & undrained response Plasticity theory & Critical State Soil Mechanics, Cam Clay Application of plasticity theory | |||||
Skript | Printed script with web support Exercises | |||||
Literatur | http://geotip.igt.ethz.ch/ | |||||
Voraussetzungen / Besonderes | Lectures will be conducted as Problem Based Learning within the framework of a case history Virtual laboratory in support of 'hands-on' experience of selected laboratory tests Pre-requirements: Basic knowledge in soil mechanics as well as knowledge of advanced mechanics Laboratory equipment will be available for 60 students. First priority goes to those registered for the geotechnics specialty in the Masters, 2nd year students then first year students, doctoral students qualifying officially for their PhD status and then 'first come, first served'. | |||||
101-0307-00L | Design and Construction in Geotechnical Engineering | W | 4 KP | 3G | I. Anastasopoulos, A. Marin | |
Kurzbeschreibung | Die Lehrveranstaltung beinhaltet die praktische Anwendung der im Grundlagenstudium erworbenen geotechnischen Kenntnisse. Die in der Praxis des Geotechnikers wichtigsten Themengebiete werden behandelt und die Grundlagen für die Planung und Bemessung von geotechnischen Bauwerken werden vermittelt. | |||||
Lernziel | Umsetzung bzw. Vertiefung der in den Grundlagenveranstaltungen erworbenen theoretischen Grundlagen. Fähigkeit zu Entwurf und Bemessung von geotechnischen Bauwerken auf dem Stand der Technik. | |||||
Inhalt | u.a.: Einführung in die relevanten SIA Normen Flachfundationen und Setzungen Pfahlfundationen Baugrubenabschlüsse Böschungen und Hänge Nagelwände Geokunststoffbewehrter Boden Baugrundverbesserung Flussdämme | |||||
Skript | Vorlesungsfolien und weiterführende Unterlagen werden zur Verfügung gestellt (Web Unterstützung http://geotip.igt.ethz.ch)) Übungsunterlagen | |||||
Literatur | Sekundärliteratur zu Vorlesungsthemen wird vorlesungsbegleitend angegeben | |||||
Voraussetzungen / Besonderes | Voraussetzungen: Bachelorausbildung als Bauingenieur (ETH) mit erfolgreicher Belegung der Fächer Bodenmechanik (5KE) und Grundbau (5KE) oder äquivalent. Die Vorlesung umfasst mindesten einen Vortrag aus der Praxis. | |||||
101-0369-00L | Forensic Geotechnical Engineering Voraussetzung: erfolgreicher Abschluss der Lerneinheit "Grundbau" (101-0315-00L) oder ein ähnliches Fach. | W | 3 KP | 2G | A. Puzrin | |
Kurzbeschreibung | In this course selected famous geotechnical failures are investigated with the following purpose: (a) to deepen understanding of the geotechnical risks and possible solutions; (b) to practice design and analysis methods; (c) to learn the techniques for investigation of failures; (d) to learn the techniques for mitigation of the failure damage. | |||||
Lernziel | In this course selected famous geotechnical failures are investigated with the following purpose: (a) to deepen understanding of the geotechnical risks and possible solutions; (b) to practice design and analysis methods; (c) to learn the techniques for investigation of failures; (d) to learn the techniques for mitigation of the failure damage. | |||||
Inhalt | Failure due to the loading history Failure due to the creeping landslides Failure due to excessive settlements Failure due to the leaning instability Failure due to tunnelling Bearing capacity failure Excavation failure | |||||
Skript | Lecture notes Exercises | |||||
Literatur | Puzrin, A.M.; Alonso, E.E.; Pinyol, N.M.: Geomechanics of failures. Springer, 2010. Lang, H.J; Huder, J; Amann, P.; Puzrin, A.M.: Bodenmechanik und Grundbau, Springer-Lehrbuch, 9. Auflage, 2010. | |||||
Voraussetzungen / Besonderes | The course is given in the first MSc semester. Prerequisite: Basic knowledge in Geotechnical Engineering (Course content of "Grundbau" or similar lecture). | |||||
Vertiefung in Konstruktion | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
101-0117-00L | Theory of Structures III | O | 3 KP | 2G | B. Stojadinovic | |
Kurzbeschreibung | This course focuses on the axial, shear, bending and torsion load-deformation response of continuous elastic prismatic structural elements such as rods, beams, shear walls, frames, arches, cables and rings. Additional special topics, such as the behavior of inelastic prismatic structural elements or the behavior of planar structural elements and structures, may be addressed time-permitting. | |||||
Lernziel | After passing this course students will be able to: 1. Explain the equilibrium of continuous structural elements. 2. Formulate mechanical models of continuous prismatic structural elements. 3. Analyze the axial, shear, bending and torsion load-deformation response of prismatic structural elements and structures assembled using these elements. 4. Determine the state of forces and deformations in rods, beams, frame structures, arches, cables and rings under combined mechanical and thermal loading. 5. Use the theory of continuous structures to design structures and understand the basis for structural design code provisions. | |||||
Inhalt | This is the third course in the ETH series on theory of structures. Building on the material covered in previous courses, this course focuses on the axial, shear, bending and torsion load-deformation response of continuous elastic prismatic structural elements such as rods, beams, shear walls, frames, arches, cables and rings. Additional special topics, such as the behavior of inelastic prismatic structural elements or the behavior of planar structural elements and structures may be addressed if time permits. The course provides the theoretical background and engineering guidelines for practical structural analysis of modern structures. | |||||
Skript | Lecture notes "Theory of Structures III" | |||||
Literatur | Marti, Peter, “Baustatik: Grundlagen, Stabtragwerke, Flächentragwrke”, Ernst & Sohn, Berlin, 2. Auflage, 2014 Bouma, A. L., “Mechanik schlanker Tragwerke: Ausgewählte Beispiele der Praxis”, Springer Verlag, Berlin, 1993. | |||||
Voraussetzungen / Besonderes | Working knowledge of theory of structures, as covered in ETH course Theory of Structures I (Baustatik I) and Theory of Structures II (Baustatik II) and ordinary differential equations. Basic knowledge of structural design of reinforced concrete, steel or wood structures. Familiarity with structural analysis computer software and computer tools such as Matlab, Mathematica, Mathcad or Excel. | |||||
101-0127-00L | Stahlbeton III | O | 3 KP | 2G | W. Kaufmann | |
Kurzbeschreibung | Die Vorlesung ergänzt und vertieft die Vorlesungen Stahlbeton I und II hinsichtlich der Tragwerksanalyse und Bemessung von Stahlbeton- und Spannbetonkonstruktionen. Im Zentrum stehen statische und kinematische Verfahren der Plastizitätstheorie für Balken, Scheiben und Platten und ihre Anwendung, insbesondere bei der der Tragsicherheitsbeurteilung bestehender Bauwerke. | |||||
Lernziel | Vertiefung der Kenntnisse des Trag- und Verformungsverhaltens von Stahlbeton und Spannbeton; Kenntnis verfeinerter Modelle und Fähigkeit zur Anwendung auf allgemeine Problemstellungen, insbesondere die Tragsicherheitsbeurteilung bestehender Bauwerke; Kenntnis der Anwendungsgrenzen plastischer Bemessungsverfahren und Befähigung zur Überprüfung ihrer Anwendbarkeit. | |||||
Inhalt | Grundlagen (Tragwerksanalyse, Grenzwertsätze der Plastizitätstheorie, Anwendbarkeit von Traglastverfahren); Scheiben und Träger (Spannungsfelder und Fachwerkmodelle, Bruchmechanismen, Verformungsvermögen, Scheibenelemente mit Fliessbedingungen und Last-Verformungsverhalten); Platten (Gleichgewichtslösungen, Fliessbedingungen, Bruchmechanismen, Querkraft in Platten); Vorspannung von Flächentragwerken; Langzeiteinflüsse; Ergänzungen. | |||||
Skript | Autographie siehe http://www.kaufmann.ibk.ethz.ch/lehre/masterstudium/stahlbeton-iii.html | |||||
Literatur | Marti, P., Alvarez, M., Kaufmann, W. und Sigrist, V., "Tragverhalten von Stahlbeton", IBK Publikation SP-008, Sept. 1999, 301 pp. Muttoni, A., Schwartz, J. und Thürlimann, B.,: "Bemessung von Betontragwerken mit Spannungsfeldern", Birkhäuser Verlag, Basel, 1997, 145 pp. | |||||
101-0137-00L | Stahlbau III | O | 3 KP | 2G | M. Fontana, R. Bärtschi, M. Knobloch | |
Kurzbeschreibung | Vertiefen/Erweitern der theoretischen Grundlagen und konstruktiven Belange unter Einbezug ausführungstechn. und wirtschaftl. Aspekte, wie konstr. Gestaltung/Bemessung von Kranbahnen. Verbundbauteile, Teilverbund, Gebrauchstauglichkeit. Brand/Brandschutz, Feuerwiderstandberechnungen, Stabilitätsprobleme. Profilbleche und Kaltprofile. Oberflächenschutz, Qualitätssicherung und Preisbildung. | |||||
Lernziel | Vertiefen und Erweitern der theoretischen Grundlagen und konstruktiven Belange des Stahlbaus unter Einbezug ausführungstechnischer und wirtschaftlicher Aspekte. | |||||
Inhalt | Konstruktive Gestaltung und Bemessung von Kranbahnen. Verbundbauteile im Hochbau (Verbundträger, Verbundstützen, Verbundblechdecken), Teilverbund, Gebrauchstauglichkeit. Brandschutz: Brandschutzziele und -konzepte, die Einwirkung Brand, Feuerwiderstandberechnung von Stahl- und Verbundbauteilen. Ergänzungen zu Stabilitätsproblemen und nichtlinearer Berechnung. Profilbleche und Kaltprofile als Tragelemente, Konstruktion und Bemessung als Biege- resp. Schubelemente. Oberflächenschutz von Stahlbauteilen. Qualitätssicherung und Preisbildung. | |||||
Skript | Autographieblätter Folienkopien | |||||
Literatur | - Stahlbauhandbuch 1 und 2, Stahlbau-Verlags-GmbH, Köln - Stahlbaukalender 2000, Ernst + Sohn, Berlin, 1999 | |||||
Voraussetzungen / Besonderes | Voraussetzungen: Stahlbau I und II | |||||
101-0187-00L | Structural Reliability and Risk Analysis | W | 3 KP | 2G | S. Marelli | |
Kurzbeschreibung | Structural reliability aims at quantifying the probability of failure of systems due to uncertainties in their design, manufacturing and environmental conditions. Risk analysis combines this information with the consequences of failure in view of optimal decision making. The course presents the underlying probabilistic modelling and computational methods for reliability and risk assessment. | |||||
Lernziel | The goal of this course is to provide the students with a thorough understanding of the key concepts behind structural reliability and risk analysis. After this course the students will have refreshed their knowledge of probability theory and statistics to model uncertainties in view of engineering applications. They will be able to analyze the reliability of a structure and to use risk assessment methods for decision making under uncertain conditions. They will be aware of the state-of-the-art computational methods and software in this field. | |||||
Inhalt | Engineers are confronted every day to decision making under limited amount of information and uncertain conditions. When designing new structures and systems, the design codes such as SIA or Euro- codes usually provide a framework that guarantees safety and reliability. However the level of safety is not quantified explicitly, which does not allow the analyst to properly choose between design variants and evaluate a total cost in case of failure. In contrast, the framework of risk analysis allows one to incorporate the uncertainty in decision making. The first part of the course is a reminder on probability theory that is used as a main tool for reliability and risk analysis. Classical concepts such as random variables and vectors, dependence and correlation are recalled. Basic statistical inference methods used for building a probabilistic model from the available data, e.g. the maximum likelihood method, are presented. The second part is related to structural reliability analysis, i.e. methods that allow one to compute probabilities of failure of a given system with respect to prescribed criteria. The framework of reliability analysis is first set up. Reliability indices are introduced together with the first order-second moment method (FOSM) and the first order reliability method (FORM). Methods based on Monte Carlo simulation are then reviewed and illustrated through various examples. By-products of reliability analysis such as sensitivity measures and partial safety coefficients are derived and their links to structural design codes is shown. The reliability of structural systems is also introduced as well as the methods used to reassess existing structures based on new information. The third part of the course addresses risk assessment methods. Techniques for the identification of hazard scenarios and their representation by fault trees and event trees are described. Risk is defined with respect to the concept of expected utility in the framework of decision making. Elements of Bayesian decision making, i.e. pre-, post and pre-post risk assessment methods are presented. The course also includes a tutorial using the UQLab software dedicated to real world structural reliability analysis. | |||||
Skript | Slides of the lectures are available online every week. A printed version of the full set of slides is proposed to the students at the beginning of the semester. | |||||
Literatur | Ang, A. and Tang, W.H, Probability Concepts in Engineering - Emphasis on Applications to Civil and Environmental Engineering, 2nd Edition, John Wiley & Sons, 2007. S. Marelli, R. Schöbi, B. Sudret, UQLab user manual - Structural reliability (rare events estimation), Report UQLab-V0.92-107. | |||||
Voraussetzungen / Besonderes | Basic course on probability theory and statistics | |||||
101-0157-01L | Structural Dynamics and Vibration Problems | W | 3 KP | 2G | B. Stojadinovic, V. Ntertimanis | |
Kurzbeschreibung | Fundamentals of structural dynamics are presented. Computing the response of elastic and inelastic single-DOF, continuous-mass and multiple-DOF structural systems subjected to harmonic, periodic, pulse, impulse, and random excitation is discussed. Practical solutions to vibration problems in flexible structures excited by humans, machinery, wind and explosions are developed. | |||||
Lernziel | After successful completion of this course the students will be able to: 1. Explain the dynamic equilibrium of structures under dynamic loading. 2. Use second-order differential equations to theoretically and numerically model the dynamic equilibrium of structural systems. 3. Model structural systems using single-degree-of-freedom, continuous-mass and multiple-degree-of-freedom models. 4. Compute the dynamic response of structural system to harmonic, periodic, pulse, impulse and random excitation using time-history and response-spectrum methods. 5. Apply structural dynamics principles to solve vibration problems in flexible structures excited by humans, machines, wind or explosions. 6. Use dynamics of structures to identify the basis for structural design code provisions related to dynamic loading. | |||||
Inhalt | This is a course on structural dynamics, an extension of structural analysis for loads that induce significant inertial forces and vibratory response of structures. Dynamic responses of elastic and inelastic single-degree-of-freedom, continuous-mass and multiple-degree-of-freedom structural systems subjected to harmonic, periodic, pulse, impulse, and random excitation are discussed. Theoretical background and engineering guidelines for practical solutions to vibration problems in flexible structures caused by humans, machinery, wind or explosions are presented. Laboratory demonstrations of single- and multi-degree-of-freedom system dynamic response and use of viscous and tuned-mass dampers are conducted. | |||||
Skript | The electronic copies of the learning material will be uploaded to ILIAS and available through myStudies. The learning material includes: the lecture presentations, additional reading material, and exercise problems and solutions. | |||||
Literatur | Dynamics of Structures: Theory and Applications to Earthquake Engineering, 4th edition, Anil Chopra, Prentice Hall, 2014 Vibration Problems in Structures: Practical Guidelines, Hugo Bachmann et al., Birkhäuser, Basel, 1995 Weber B., Tragwerksdynamik. http://e-collection.ethbib.ethz.ch/cgi-bin/show.pl?type=lehr&nr=76 .ETH Zürich, 2002. | |||||
Voraussetzungen / Besonderes | Knowledge of the fundamentals in structural analysis, and in structural design of reinforced concrete, steel and/or wood structures is mandatory. Working knowledge of matrix algebra and ordinary differential equations is required. Familiarity with Matlab and with structural analysis computer software is desirable. | |||||
051-0551-00L | Energie- und Klimasysteme I Auslaufender Studiengang nach Reglement BSc 2011. | W | 2 KP | 2G | A. Schlüter | |
Kurzbeschreibung | Im ersten Semester des Jahreskurses werden die wesentlichen physikalischen Prinzipien, Konzepte, Komponenten und Systeme für die effiziente und nachhaltige Versorgung von Gebäuden mit Wärme, Kälte und Luft behandelt. Abhängigkeiten und Interaktionen zwischen technischen Systemen und dem architektonischen und städtebaulichen Entwerfen werden aufgezeigt. | |||||
Lernziel | Ziel der Vorlesung ist die Kenntnis der physikalischen Grundlagen, relevanten Konzepte und technischen Systeme für die effiziente und nachhaltige Versorgung von Gebäuden bzw. Distrikten mit Wärme, Kälte und Frischluft. Mittels Erlernen überschlägiger Berechnungsmethoden wird die Ermittlung relevanter Grössen und die Identifikation wichtiger Parameter geübt. Auf diese Weise können passende Ansätze für den eigenen Entwurf ausgewählt, qualitativ und quantitativ bewertet und integriert werden. | |||||
Inhalt | 1. Einführung und Überblick 2. Heizen und Kühlen 3. Thermische Speicher 4. Distriktenergiesysteme 5. Aktive und passive Lüftung | |||||
Skript | Die Folien der Vorlesung dienen als Skript und sind als download erhältlich. | |||||
Literatur | Eine Liste weiterführender Literatur ist am Lehrstuhl erhältlich. | |||||
101-0177-00L | Building Physics: Moisture and Durability | W | 3 KP | 2G | J. Carmeliet, T. Defraeye | |
Kurzbeschreibung | Moisture transport and related degradation processes in building and civil engineering materials and structures; concepts of poromechanics and multiscale analysis; analysis of damage cases. | |||||
Lernziel | - Basic knowledge of moisture transport and related degradation processes in building and civil engineering materials and structures - Introduction to concepts of poromechanics and multiscale analysis - Application of knowledge by the analysis of damage cases | |||||
Inhalt | 1. Introduction Moisture damage: problem statement Durability 2. Moisture Transport Description of moisture transport Determination of moisture transport properties Hysteresis Transport in cracked materials Damage and moisture transport in cracked media 3. Poromechanics Moisture and mechanics: poro-elasticity Poro-elasticity and salt crystallisation Poro-elasticity and damage Case studies 4. Multiscale analysis Problem statement Multiscale transport model Multiscale coupled transport - damage model | |||||
101-0167-01L | Fibre Composite Materials in Structural Engineering | W | 3 KP | 2G | M. Motavalli | |
Kurzbeschreibung | 1) Lamina and Laminate Theory 2) FRP Manufacturing and Testing Methods 3) Design and Application of Externally Bonded Reinforcement to Concrete, Timber, Masonry, and metallic Structures 4) FRP Reinforced Concrete, All FRP Structures 5) Measurement Techniques and Structural Health Monitoring | |||||
Lernziel | At the end of the course, you shall be able to 1) Design advanced FRP composites for your structures, 2) To consult owners and clients with necessray testing and SHM techniques for FRP structures, 3) Continue your education as a phd student in this field. | |||||
Inhalt | Fibre Reinforced Polymer (FRP) composites are increasingly being used in civil infrastructure applications, such as reinforcing rods, tendons and FRP profiles as well as wraps for seismic upgrading of columns and repair of deteriorated structures. The objective of this course is on one hand to provide new generation of engineering students with an overall awareness of the application and design of FRP reinforcing materials for internal and external strengthening (repair) of reinforced concrete structures. The FRP strengthening of other structures such as metallic, timber and masonry will also be shortly discussed. On the other hand the course will provide guidance to students seeking additional information on the topic. Many practical cases will be presented analysed and discussed. An ongoing structural health monitoring of these new materials is necessary to ensure that the structures are performing as planned, and that the safety and integrity of structures is not compromised. The course outlines some of the primary considerations to keep in mind when designing and utilizing structural health monitoring technologies. During the course, students will have the opportunity to design FRP strengthened concrete beams, apply the FRP by themselves, and finally test their samples up to failure. | |||||
Skript | 1) Power Point Printouts 2) Handouts | |||||
Literatur | 1) Lawrence C. Bank, Composites for Construction: Structural Design with FRP Materials, John Wiley & Sons, ISBN-13: 978-0471-68126-7 2) fib bulletin 14, Externally Bonded FRP Reinforcement for RC Structures, 2001 3) Eckold G., Design and Manufacture of Composite Structures, ISBN 1 85573 051 0, Woodhead Publishing Limited, Cambridge, England, 1994 | |||||
Voraussetzungen / Besonderes | 1) Laboratory Tours and Demonstrations: Empa Structural Engineering Laboratory including Smart Composites, Shape Memory Alloys, Large Scale Testing of Structural Components 2) Working with Composite Materials in the Laboratory (application, testing, etc) |
- Seite 1 von 5 Alle