Suchergebnis: Katalogdaten im Herbstsemester 2016
Interdisziplinäre Naturwissenschaften Bachelor ![]() | ||||||
![]() | ||||||
![]() ![]() | ||||||
![]() ![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
401-1261-07L | Analysis I | O | 10 KP | 6V + 3U | M. Einsiedler | |
Kurzbeschreibung | Einführung in die Differential- und Integralrechnung in einer reellen Veränderlichen: Grundbegriffe des mathematischen Denkens, Zahlen, Folgen und Reihen, topologische Grundbegriffe, stetige Funktionen, differenzierbare Funktionen, gewöhnliche Differentialgleichungen, Riemannsche Integration. | |||||
Lernziel | Mathematisch exakter Umgang mit Grundbegriffen der Differential-und Integralrechnung. | |||||
Literatur | K. Koenigsberger: Analysis I, Springer-Verlag http://link.springer.com/book/10.1007/978-3-642-18490-1 R. Courant: Vorlesungen ueber Differential- und Integralrechnung. Springer Verlag http://link.springer.com/book/10.1007/978-3-642-61988-5 V. Zorich: Analysis I. Springer Verlag 2006 http://link.springer.com/book/10.1007/3-540-33278-2 Chr. Blatter: Analysis. https://people.math.ethz.ch/%7eblatter/ Struwe: Analysis I/II, siehe https://people.math.ethz.ch/%7estruwe/skripten.html H. Heuser: Lehrbuch der Analysis. Teubner Verlag W. Walter: Analysis 1. Springer Verlag O. Forster: Analysis I. Vieweg Verlag J.Appell: Analysis in Beispielen und Gegenbeispielen. Springer Verlag Link Schichl u. Steinbauer, Einführung in das mathematische Arbeiten http://link.springer.com/book/10.1007/978-3-642-28646-9 Beutelspacher, Das ist o.B.d.A. trivial http://link.springer.com/book/10.1007/978-3-8348-9599-8 | |||||
401-1151-00L | Lineare Algebra I | O | 7 KP | 4V + 2U | M. Akveld | |
Kurzbeschreibung | Einführung in die Theorie der Vektorräume für Studierende der Mathematik und der Physik: Grundlagen, Vektorräume, lineare Abbildungen, Lösungen linearer Gleichungen und Matrizen, Determinanten, Endomorphismen, Eigenwerte und Eigenvektoren. | |||||
Lernziel | - Beherrschung der Grundkonzepte der Linearen Algebra - Einführung ins mathematische Arbeiten | |||||
Inhalt | - Grundlagen - Vektorräume und lineare Abbildungen - Lineare Gleichungssysteme und Matrizen - Determinanten - Endomorphismen und Eigenwerte | |||||
Literatur | - H. Schichl und R. Steinbauer: Einführung in das mathematische Arbeiten. Springer-Verlag 2012. Siehe: http://link.springer.com/book/10.1007%2F978-3-642-28646-9 - G. Fischer: Lineare Algebra. Springer-Verlag 2014. Siehe: http://link.springer.com/book/10.1007/978-3-658-03945-5 - K. Jänich: Lineare Algebra. Springer-Verlag 2004. Siehe: http://link.springer.com/book/10.1007/978-3-662-08375-8 - S. H. Friedberg, A. J. Insel und L. E. Spence: Linear Algebra. Pearson 2003. Link - R. Pink: Lineare Algebra I und II. Skript. Siehe: https://people.math.ethz.ch/%7epink/ftp/LA-Zusammenfassung-20150901.pdf | |||||
402-1701-00L | Physik I | O | 7 KP | 4V + 2U | A. Wallraff | |
Kurzbeschreibung | Diese Vorlesung stellt eine erste Einführung in die Physik dar. Der Schwerpunkt liegt auf klassischer Mechanik, zusammen mit einer Einführung in die Wärmelehre. | |||||
Lernziel | Aneignung von Kenntnissen der physikalischen Grundlagen in der klassischen Mechanik und Waermelehre. Fertigkeiten im Lösen von physikalischen Fragen anhand von Übungsaufgaben. | |||||
529-0011-01L | Allgemeine Chemie I (PC) ![]() | O | 3 KP | 2V + 1U | F. Merkt | |
Kurzbeschreibung | Aufbau der Materie und Atombau; Energiezustände des Atoms; Quantenmechanisches Atommodell; Chemische Bindung; Gasgesetze. | |||||
Lernziel | Einführung in die physikalischen Grundlagen der Chemie. | |||||
Inhalt | Aufbau der Materie und Atombau: Atomtheorie, Elementarteilchen, Atomkern, Radioaktivität, Kernreaktionen. Energiezustände des Atoms: Ionisierungsenergien, Atomspektroskopie, Termschemata. Quantenmechanisches Atommodell: Dualität Welle-Teilchen, Unbestimmtheitsrelation, Schrödingergleichung, Wasserstoffatom, Aufbau des Periodensystems der Elemente. Chemische Bindung: Ionische Bindung, kovalente Bindung, Molekülorbitale. Gasgesetze: Ideale Gase | |||||
Skript | Beachten Sie die Homepage zur Vorlesung. | |||||
Literatur | Beachten Sie die Homepage zur Vorlesung. | |||||
Voraussetzungen / Besonderes | Voraussetzungen: Maturastoff. Insbesondere Integral- und Differentialrechnung. |
Seite 1 von 1