Suchergebnis: Katalogdaten im Herbstsemester 2016

Informatik Bachelor Information
Bachelor-Studium (Studienreglement 2008)
Vertiefung
Wahlfächer der Vertiefung
Es können auch Lehrveranstaltungen aus dem Master-Studiengang in Informatik gewählt werden. Es liegt in der Verantwortung der Studierenden, sicherzustellen, dass sie die Voraussetzungen für diese Lehrveranstaltungen erfüllen.
NummerTitelTypECTSUmfangDozierende
252-3110-00LHuman Computer Interaction Information W4 KP2V + 1UO. Hilliges, M. Norrie
KurzbeschreibungThe course provides an introduction to the field of human-computer interaction, emphasising the central role of the user in system design. Through detailed case studies, students will be introduced to different methods used to analyse the user experience and shown how these can inform the design of new interfaces, systems and technologies.
LernzielThe goal of the course is that students should understand the principles of user-centred design and be able to apply these in practice.
InhaltThe course will introduce students to various methods of analysing the user experience, showing how these can be used at different stages of system development from requirements analysis through to usability testing. Students will get experience of designing and carrying out user studies as well as analysing results. The course will also cover the basic principles of interaction design. Practical exercises related to touch and gesture-based interaction will be used to reinforce the concepts introduced in the lecture. To get students to further think beyond traditional system design, we will discuss issues related to ambient information and awareness.
151-0107-20LHigh Performance Computing for Science and Engineering (HPCSE) IW4 KP4GM. Troyer, P. Chatzidoukas
KurzbeschreibungThis course gives an introduction into algorithms and numerical methods for parallel computing for multi and many-core architectures and for applications from problems in science and engineering.
LernzielIntroduction to HPC for scientists and engineers
Fundamental of:
1. Parallel Computing Architectures
2. MultiCores
3. ManyCores
InhaltProgramming models and languages:
1. C++ threading (2 weeks)
2. OpenMP (4 weeks)
3. MPI (5 weeks)

Computers and methods:
1. Hardware and architectures
2. Libraries
3. Particles: N-body solvers
4. Fields: PDEs
5. Stochastics: Monte Carlo
Skripthttp://www.cse-lab.ethz.ch/index.php/teaching/42-teaching/classes/615-hpcse1
Class notes, handouts
227-0627-00LAngewandte Computer ArchitekturW6 KP4GA. Gunzinger
KurzbeschreibungDiese Vorlesung gibt einen Überblick über die Anforderungen und die Architektur von parallelen Computersystemen unter Berücksichtigung von Rechenleistung, Zuverlässigkeit und Kosten.
LernzielArbeitsweise von parallelen Computersystemen verstehen, solche Systeme entwerfen und modellieren.
InhaltDie Vorlesung Angewandte Computer Architektur gibt technische und unternehmerische Einblicke in innovative Computersysteme/Architekturen (CPU, GPU, FPGA, Spezialprozessoren) und deren praxisnahe Umsetzung. Dabei werden oft die Grenzen der technologischen Möglichkeiten ausgereizt.
Wie ist das Computersystem aufgebaut, das die über 1000 Magneten an der Swiss Light Source (SLS) steuert?
Wie ist das hochverfügbare Alarmzentrum der SBB aufgebaut?
Welche Computer Architekturen werden in Fahrerassistenzsystemen verwendet?
Welche Computerarchitektur versteckt sich hinter einem professionellen digitalen Audio Mischpult?
Wie können Datenmengen von 30 TB/s, wie sie bei einem Protonen-Beschleuniger entstehen, in Echtzeit verarbeitet werden?
Kann die aufwändige Berechnung der Wettervorhersage auch mit GPUs erfolgen?
Nach welcher Systematik können optimale Computerarchitekturen gefunden werden?
Welche Faktoren sind entscheidend, um solche Projekte erfolgreich umzusetzen?
SkriptSkript und Übungsblätter.
Voraussetzungen / BesonderesVoraussetzungen:
Grundlagen der Computerarchitektur.
227-0945-00LCell and Molecular Biology for Engineers I
This course is part I of a two-semester course.
W3 KP3GC. Frei
KurzbeschreibungThe course gives an introduction into cellular and molecular biology, specifically for students with a background in engineering. The focus will be on the basic organization of eukaryotic cells, molecular mechanisms and cellular functions. Textbook knowledge will be combined with results from recent research and technological innovations in biology.
LernzielAfter completing this course, engineering students will be able to apply their previous training in the quantitative and physical sciences to modern biology. Students will also learn the principles how biological models are established, and how these models can be tested.
InhaltLectures will include the following topics: DNA, chromosomes, RNA, protein, genetics, gene expression, membrane structure and function, vesicular traffic, cellular communication, energy conversion, cytoskeleton, cell cycle, cellular growth, apoptosis, autophagy, cancer, development and stem cells.

In addition, three journal clubs will be held, where one/two publictions will be discussed (part I: 1 Journal club, part II: 2 Journal Clubs). For each journal club, students (alone or in groups of up to three students) have to write a summary and discussion of the publication. These written documents will be graded and count as 25% for the final grade.
SkriptScripts of all lectures will be available.
Literatur"Molecular Biology of the Cell" (6th edition) by Alberts, Johnson, Lewis, Raff, Roberts, and Walter.
227-1037-00LIntroduction to Neuroinformatics Information W6 KP2V + 1UK. A. Martin, M. Cook, V. Mante, M. Pfeiffer
KurzbeschreibungThe course provides an introduction to the functional properties of neurons. Particularly the description of membrane electrical properties (action potentials, channels), neuronal anatomy, synaptic structures, and neuronal networks. Simple models of computation, learning, and behavior will be explained. Some artificial systems (robot, chip) are presented.
LernzielUnderstanding computation by neurons and neuronal circuits is one of the great challenges of science. Many different disciplines can contribute their tools and concepts to solving mysteries of neural computation. The goal of this introductory course is to introduce the monocultures of physics, maths, computer science, engineering, biology, psychology, and even philosophy and history, to discover the enchantments and challenges that we all face in taking on this major 21st century problem and how each discipline can contribute to discovering solutions.
InhaltThis course considers the structure and function of biological neural networks at different levels. The function of neural networks lies fundamentally in their wiring and in the electro-chemical properties of nerve cell membranes. Thus, the biological structure of the nerve cell needs to be understood if biologically-realistic models are to be constructed. These simpler models are used to estimate the electrical current flow through dendritic cables and explore how a more complex geometry of neurons influences this current flow. The active properties of nerves are studied to understand both sensory transduction and the generation and transmission of nerve impulses along axons. The concept of local neuronal circuits arises in the context of the rules governing the formation of nerve connections and topographic projections within the nervous system. Communication between neurons in the network can be thought of as information flow across synapses, which can be modified by experience. We need an understanding of the action of inhibitory and excitatory neurotransmitters and neuromodulators, so that the dynamics and logic of synapses can be interpreted. Finally, the neural architectures of feedforward and recurrent networks will be discussed in the context of co-ordination, control, and integration of sensory and motor information in neural networks.
252-4101-00LACM-Lab
Findet dieses Semester nicht statt.
W4 KP3PA. Steger
KurzbeschreibungSolve programming problems from previous ACM Programming Contests (see http://acm.uva.es/problemset/); learn and use efficient programming methods and algorithms.
LernzielThe objective of this course is to learn how to solve algorithmic problems given as descriptions in natural language, similar to those posed in ACM Programming Contests. This includes appropriate problem modeling, choice of suitable (combinatorial) algorithms, and their efficient implementation using C/C++ and the STL.
  •  Seite  1  von  1