Suchergebnis: Katalogdaten im Herbstsemester 2016

Informatik Bachelor Information
Bachelor-Studium (Studienreglement 2008)
3. Semester
Obligatorische Fächer (3. Sem.)
NummerTitelTypECTSUmfangDozierende
252-0057-00LTheoretische Informatik Information O8 KP4V + 2U + 1AJ. Hromkovic
KurzbeschreibungKonzepte zur Beantwortung grundlegender Fragen wie: a) Was ist völlig automatisiert machbar (algorithmisch lösbar) b) Wie kann man die Schwierigkeit von Aufgaben (Problemen) messen? c) Was ist Zufall und wie kann er nützlich sein? d) Was ist Nichtdeterminisus und welche Rolle spielt er in der Informatik? e) Wie kann man unendliche Objekte durch Automaten und Grammatiken endlich darstellen?
LernzielVermittlung der grundlegenden Konzepte der Informatik in ihrer geschichtlichen Entwicklung
InhaltDie Veranstaltung ist eine Einführung in die Theoretische Informatik, die die grundlegenden Konzepte und Methoden der Informatik in ihrem geschichtlichen Zusammenhang vorstellt. Wir präsentieren Informatik als eine interdisziplinäre Wissenschaft, die auf einer Seite die Grenzen zwischen Möglichem und Unmöglichem und die quantitativen Gesetze der Informationsverarbeitung erforscht und auf der anderen Seite Systeme entwirft, analysiert, verifiziert und implementiert.

Die Hauptthemen der Vorlesung sind:

- Alphabete, Wörter, Sprachen, Messung der Informationsgehalte von Wörtern, Darstellung von algorithmischen Aufgaben
- endliche Automaten, reguläre und kontextfreie Grammatiken
- Turingmaschinen und Berechenbarkeit
- Komplexitätstheorie und NP-Vollständigkeit
- Algorithmenentwurf für schwere Probleme
SkriptDie Vorlesung ist detailliert durch das Lehrbuch "Theoretische Informatik" bedeckt.
LiteraturBasisliteratur:
1. J. Hromkovic: Theoretische Informatik. 5. Auflage, Springer Vieweg 2014.

2. J. Hromkovic: Theoretical Computer Science. Springer 2004.

Weiterführende Literatur:
3. M. Sipser: Introduction to the Theory of Computation, PWS Publ. Comp.1997
4. J.E. Hopcroft, R. Motwani, J.D. Ullman: Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie.
Pearson 2002.
5. I. Wegener: Theoretische Informatik. Teubner
Weitere Übungen und Beispiele:
6. A. Asteroth, Ch. Baier: Theoretische Informatik
Voraussetzungen / BesonderesWährend des Semesters werden zwei freiwillige Probeklausuren gestellt.
252-0061-00LSystems Programming and Computer Architecture Information O8 KP4V + 2U + 1AT. Roscoe
KurzbeschreibungIntroduction to computer architecture and system programming:

Instruction sets, storage hiearchies, runtime structures with an
emphasis on computers as engines for the execution of compiled
programs. Interaction between system software and the hardware.
Problems that arise from the final respresentation, performance
measurement and tuning, and program portability issues are covered.
LernzielThe objective is to allow students to understand all aspects of the
execution of compiled (C) programs on modern architectures -- the
instruction set, the storage resources (registers, stack, memory),
input/output, the impact of compiler decisions, and the interaction
between the operating system and hardware. Two main themes are
correctness issues (esp. those that arise from the finite
representation of data) and performance issues (incl. measurement and
tuning issues). The interface to the operating system is discussed to
prepare for subsequent classes on more advanced systems topics.

The two key goals are:

1) To equip students with a thorough understanding of how to
write correct programs that run fast on modern computer, and
2) How to write correct and efficient low-level systems code.

This course does not cover how to design or build a processor or
computer.
InhaltThis course provides an overview of "computers" as a
platform for the execution of (compiled) computer programs. This
course provides a programmer's view of how computer systems execute
programs, store information, and communicate. The course introduces
the major computer architecture structures that have direct influence
on the execution of programs (processors with registers, caches, other
levels of the memory hierarchy, supervisor/kernel mode, and I/O
structures) and covers implementation and representation issues only
to the extend that they are necessary to understand the structure and
operation of a computer system.

The course attempts to expose students to the practical issues that
affect performance, portability, security, robustness, and
extensibility. This course provides a foundation for subsequent
courses on operating systems, networks, compilers and many other
courses that require an understanding of the system-level
issues. Topics covered include: machine-level code and its generation
by optimizing compilers, address translation, input and output,
trap/event handlers, performance evaluation and optimization (with a
focus on the practical aspects of data collection and analysis).
LiteraturThe course is based in part on "Computer Systems: A Programmer's Perspective" (2nd Edition) by R. Bryant and D. O'Hallaron, with some additional material.
Voraussetzungen / Besonderes252-0024-00L Parallel Programming,
252-0014-00L Digital Circuits
401-0613-00LWahrscheinlichkeit und Statistik Information O6 KP3V + 2UJ. Teichmann
KurzbeschreibungGrundlagen der Wahrscheinlichkeitstheorie und der Statistik:
- Einführung in die Wahrscheinlichkeitstheorie
- kurze Einführung in Grundbegriffe und Methoden der Statistik
Lernziela) Fähigkeit, die behandelten wahrscheinlichkeitstheoretischen Methoden zu verstehen und anzuwenden

b) probabilistisches Denken und stochastische Modellierung

c) Fähigkeit, einfache statistische Tests selbst durchzuführen und die Resultate zu interpretieren
InhaltGrundlagen der Wahrscheinlichkeitstheorie und der Statistik mit spezieller Berücksichtigung der Bedürfnisse in der Informatik

Die inhaltlichen Ziele sind dabei:

- Gesetze des Zufalls und stochastisches Denken (Denken in Wahrscheinlichkeiten)
- Verständnis und Intuition für stochastische Modellierung
- einfache und grundlegende Methoden der Statistik

Der Inhalt der Vorlesung umfasst:

- Einführung in die Wahrscheinlichkeitstheorie: Grundbegriffe (Wahrscheinlichkeitsraum, Wahrscheinlichkeitsmass), Unabhängigkeit, Zufallsvariablen, diskrete und stetige Verteilungen, bedingte Wahrscheinlichkeiten, Erwartungswert und Varianz, Grenzwertsätze

- Methoden der Statistik: Parameterschätzungen, Maximum-Likelihood- und Momentenmethode, Tests, Konfidenzintervalle
SkriptEin Skript zur Vorlesung wird zu Vorlesungsbeginn elektronisch zur Verfuegung gestellt.
401-0663-00LNumerical Methods for CSE Information O7 KP4V + 2UR. Hiptmair
KurzbeschreibungThe course gives an introduction into fundamental techniques and algorithms of numerical mathematics which play a central role in numerical simulations in science and technology. The course focuses on fundamental ideas and algorithmic aspects of numerical methods. The exercises involve actual implementation of numerical methods in C++.
Lernziel* Knowledge of the fundamental algorithms in numerical mathematics
* Knowledge of the essential terms in numerical mathematics and the
techniques used for the analysis of numerical algorithms
* Ability to choose the appropriate numerical method for concrete problems
* Ability to interpret numerical results
* Ability to implement numerical algorithms afficiently
Inhalt1. Direct Methods for linear systems of equations
2. Least Squares Techniques
3. Data Interpolation and Fitting
4. Filtering Algorithms
8. Approximation of Functions
9. Numerical Quadrature
10. Iterative Methods for non-linear systems of equations
11. Single Step Methods for ODEs
12. Stiff Integrators
SkriptLecture materials (PDF documents and codes) will be made available to participants:

Lecture document: https://people.math.ethz.ch/~grsam/HS16/NumCSE/NumCSE16.pdf

Lecture Git repository: https://gitlab.math.ethz.ch/NumCSE/NumCSE

Tablet classroom notes: http://www.sam.math.ethz.ch/~grsam/HS16/NumCSE/NCSE16_Notes/

Lecture recording: http://www.video.ethz.ch/lectures/d-math/2016/autumn/401-0663-00L.html

Homework problems: https://people.math.ethz.ch/~grsam/HS16/NumCSE/NCSEProblems.pdf
LiteraturU. ASCHER AND C. GREIF, A First Course in Numerical Methods, SIAM, Philadelphia, 2011.

A. QUARTERONI, R. SACCO, AND F. SALERI, Numerical mathematics, vol. 37 of Texts in Applied Mathematics, Springer, New York, 2000.

W. Dahmen, A. Reusken "Numerik für Ingenieure und Naturwissenschaftler", Springer 2006.

M. Hanke-Bourgeois "Grundlagen der Numerischen Mathematik und des wissenschaftlichen Rechnens", BG Teubner, 2002

P. Deuflhard and A. Hohmann, "Numerische Mathematik I", DeGruyter, 2002
Voraussetzungen / BesonderesThe course will be accompanied by programming exercises in C++ relying on the template library EIGEN. Familiarity with C++, object oriented and generic programming is an advantage. Participants of the course are expected to learn C++ by themselves.
  •  Seite  1  von  1