Suchergebnis: Katalogdaten im Herbstsemester 2016

Physik Bachelor Information
Bachelor-Studium (Studienreglement 2016)
Basisjahr
» Obligatorische Fächer des Basisjahres
» GESS Wissenschaft im Kontext
» Ergänzende Fächer
Obligatorische Fächer des Basisjahres
Basisprüfungsblock 1
NummerTitelTypECTSUmfangDozierende
401-1151-00LLineare Algebra IO7 KP4V + 2UM. Akveld
KurzbeschreibungEinführung in die Theorie der Vektorräume für Studierende der Mathematik und der Physik: Grundlagen, Vektorräume, lineare Abbildungen, Lösungen linearer Gleichungen und Matrizen, Determinanten, Endomorphismen, Eigenwerte und Eigenvektoren.
Lernziel- Beherrschung der Grundkonzepte der Linearen Algebra
- Einführung ins mathematische Arbeiten
Inhalt- Grundlagen
- Vektorräume und lineare Abbildungen
- Lineare Gleichungssysteme und Matrizen
- Determinanten
- Endomorphismen und Eigenwerte
Literatur- H. Schichl und R. Steinbauer: Einführung in das mathematische Arbeiten. Springer-Verlag 2012. Siehe: http://link.springer.com/book/10.1007%2F978-3-642-28646-9
- G. Fischer: Lineare Algebra. Springer-Verlag 2014. Siehe: http://link.springer.com/book/10.1007/978-3-658-03945-5
- K. Jänich: Lineare Algebra. Springer-Verlag 2004. Siehe: http://link.springer.com/book/10.1007/978-3-662-08375-8
- S. H. Friedberg, A. J. Insel und L. E. Spence: Linear Algebra. Pearson 2003. Link
- R. Pink: Lineare Algebra I und II. Skript. Siehe: https://people.math.ethz.ch/%7epink/ftp/LA-Zusammenfassung-20150901.pdf
402-1701-00LPhysik IO7 KP4V + 2UA. Wallraff
KurzbeschreibungDiese Vorlesung stellt eine erste Einführung in die Physik dar. Der Schwerpunkt liegt auf klassischer Mechanik, zusammen mit einer Einführung in die Wärmelehre.
LernzielAneignung von Kenntnissen der physikalischen Grundlagen in der klassischen Mechanik und Waermelehre. Fertigkeiten im Lösen von physikalischen Fragen anhand von Übungsaufgaben.
252-0847-00LInformatik Information O5 KP2V + 2UB. Gärtner
KurzbeschreibungDie Vorlesung gibt eine Einführung in das Programmieren anhand der Sprache C++. Wir behandeln fundamentale Typen, Kontrollanweisungen, Funktionen, Felder und Klassen. Die Konzepte werden dabei jeweils durch Algorithmen und Anwendungen motiviert und illustriert.
LernzielDas Ziel der Vorlesung ist eine algorithmisch orientierte Einführung ins Programmieren.
InhaltDie Vorlesung gibt eine Einführung in das Programmieren anhand der Sprache C++. Wir behandeln fundamentale Typen, Kontrollanweisungen, Funktionen, Felder und Klassen. Die Konzepte werden dabei jeweils durch Algorithmen und Anwendungen motiviert und illustriert.
SkriptEin Skript in englischer Sprache sowie Handouts in deutscher Sprache werden semesterbegleitend elektronisch herausgegeben.
LiteraturAndrew Koenig and Barbara E. Moo: Accelerated C++, Addison-Wesley, 2000.

Stanley B. Lippman: C++ Primer, 3. Auflage, Addison-Wesley, 1998.

Bjarne Stroustrup: The C++ Programming Language, 3. Auflage, Addison-Wesley, 1997.

Doina Logofatu: Algorithmen und Problemlösungen mit C++, Vieweg, 2006.

Walter Savitch: Problem Solving with C++, Eighth Edition, Pearson, 2012
Basisprüfungsblock 2
NummerTitelTypECTSUmfangDozierende
401-1261-07LAnalysis IO10 KP6V + 3UM. Einsiedler
KurzbeschreibungEinführung in die Differential- und Integralrechnung in einer reellen Veränderlichen: Grundbegriffe des mathematischen Denkens, Zahlen, Folgen und Reihen, topologische Grundbegriffe, stetige Funktionen, differenzierbare Funktionen, gewöhnliche Differentialgleichungen, Riemannsche Integration.
LernzielMathematisch exakter Umgang mit Grundbegriffen der Differential-und Integralrechnung.
LiteraturK. Koenigsberger: Analysis I, Springer-Verlag
http://link.springer.com/book/10.1007/978-3-642-18490-1

R. Courant: Vorlesungen ueber Differential- und Integralrechnung.
Springer Verlag
http://link.springer.com/book/10.1007/978-3-642-61988-5

V. Zorich: Analysis I. Springer Verlag 2006
http://link.springer.com/book/10.1007/3-540-33278-2

Chr. Blatter: Analysis. https://people.math.ethz.ch/%7eblatter/

Struwe: Analysis I/II, siehe
https://people.math.ethz.ch/%7estruwe/skripten.html

H. Heuser: Lehrbuch der Analysis. Teubner Verlag
W. Walter: Analysis 1. Springer Verlag
O. Forster: Analysis I. Vieweg Verlag

J.Appell: Analysis in Beispielen und Gegenbeispielen. Springer Verlag
Link

Schichl u. Steinbauer, Einführung in das mathematische Arbeiten
http://link.springer.com/book/10.1007/978-3-642-28646-9

Beutelspacher, Das ist o.B.d.A. trivial
http://link.springer.com/book/10.1007/978-3-8348-9599-8
Bachelor-Studium (Studienreglement 2010)
Basisjahr
Lerneinheiten des Basisjahres sind im Abschnitt Bachelor-Studium (Studienreglement 2016) - Basisjahr zu finden.
Obligatorische Fächer
Obligatorische Fächer des zweiten Studienjahres
Prüfungsblock I
NummerTitelTypECTSUmfangDozierende
401-2303-00LFunktionentheorie Information O6 KP3V + 2UR. Pandharipande
KurzbeschreibungKomplexe Funktionen einer komplexen Veränderlichen, Cauchy-Riemann Gleichungen, Cauchyscher Integralsatz, Singularitäten, Residuensatz, Umlaufzahl, analytische Fortsetzung, spezielle Funktionen, konforme Abbildungen. Riemannscher Abbildungssatz.
LernzielFähigkeit zum Umgang mit analytischen Funktion; insbesondre Anwendungen des Residuensatzes
LiteraturTh. Gamelin: Complex Analysis. Springer 2001

E. Titchmarsh: The Theory of Functions. Oxford University Press

D. Salamon: "Funktionentheorie". Birkhauser, 2011. (In German)

L. Ahlfors: "Complex analysis. An introduction to the theory of analytic functions of one complex variable." International Series in Pure and Applied Mathematics. McGraw-Hill Book Co.

B. Palka: "An introduction to complex function theory."
Undergraduate Texts in Mathematics. Springer-Verlag, 1991.

K.Jaenich: Funktionentheorie. Springer Verlag

R.Remmert: Funktionentheorie I. Springer Verlag

E.Hille: Analytic Function Theory. AMS Chelsea Publications
401-2333-00LMethoden der mathematischen Physik IO6 KP3V + 2UC. A. Keller
KurzbeschreibungFourierreihen. Lineare partielle Differentialgleichungen der mathematischen Physik. Fouriertransformation. Spezielle Funktionen und Eigenfunktionenentwicklungen. Distributionen. Ausgewählte Probleme aus der Quantenmechanik.
Lernziel
Voraussetzungen / BesonderesDie Einschreibung in die Übungsgruppen erfolgt online. Melden Sie sich im Laufe der ersten Semesterwoche unter echo.ethz.ch mit Ihrem ETH Account an. Der Übungsbetrieb beginnt in der zweiten Semesterwoche.
402-2883-00LPhysik IIIO7 KP4V + 2UJ. Home
KurzbeschreibungEinführung in das Gebiet der Quanten- und Atomphysik und in die Grundlagen der Optik und statistischen Physik.
LernzielGrundlegende Kenntnisse in Quanten- und Atomphysik und zudem in Optik und statistischer Physik werden erarbeitet. Die Fähigkeit zur eigenständigen Lösung einfacher Problemstellungen aus den behandelten Themengebieten wird erreicht. Besonderer Wert wird auf das Verständnis experimenteller Methoden zur Beobachtung der behandelten physikalischen Phänomene gelegt.
InhaltEinführung in die Quantenphysik: Atome, Photonen, Photoelektrischer Effekt, Rutherford Streuung, Compton Streuung, de-Broglie Materiewellen.

Quantenmechanik: Wellenfunktionen, Operatoren, Schrödinger-Gleichung, Potentialtopf, harmonischer Oszillator, Wasserstoffatom, Spin.

Atomphysik: Zeeman-Effekt, Spin-Bahn Kopplung, Mehrelektronenatome, Röntgenspektren, Auswahlregeln, Absorption und Emission von Strahlung, LASER.

Optik: Fermatsches Prinzip, Linsen, Abbildungssysteme, Beugung und Brechung, Interferenz, geometrische und Wellenoptik, Interferometer, Spektrometer.

Statistische Physik: Wahrscheinlichkeitsverteilungen, Boltzmann-Verteilung, statistische Ensembles, Gleichverteilungssatz, Schwarzkörperstrahlung, Plancksches Strahlungsgesetz.
SkriptIm Rahmen der Veranstaltung wird ein Skript in elektronischer Form zur Verfügung gestellt.
LiteraturQuantenmechanik/Atomphysik/Moleküle: "Atom- und Quantenphysik", H. Haken and H. C. Wolf, ISBN 978-3540026211

Optik: "Optik", E. Hecht, ISBN 978-3486588613

Statistische Mechanik: "Statistical Physics", F. Mandl ISBN 0-471-91532-7
Prüfungsblock II
NummerTitelTypECTSUmfangDozierende
402-2203-01LAllgemeine Mechanik Information O7 KP4V + 2UG. M. Graf
KurzbeschreibungBegriffliche und methodische Einführung in die theoretische Physik: Newtonsche Mechanik, Zentralkraftproblem, Schwingungen, Lagrangesche Mechanik, Symmetrien und Erhaltungssätze, Kreisel, relativistische Raum-Zeit-Struktur, Teilchen im elektromagnetischen Feld, Hamiltonsche Mechanik, kanonische Transformationen, integrable Systeme, Hamilton-Jacobi-Gleichung.
Lernziel
Obligatorische Fächer des dritten Studienjahres
NummerTitelTypECTSUmfangDozierende
402-0205-00LQuantenmechanik I Information O10 KP3V + 2UT. K. Gehrmann
KurzbeschreibungEinführung in die nicht-relativistische Einteilchen-Quantenmechanik. Diskussion grundlegender Ideen der Quantenmechanik, insbesondere Quantisierung klassischer Systeme, Wellenfunktionen und die Beschreibung von Observablen durch Operatoren auf einem Hilbertraum, und die Analyse von Symmetrien. Grundlegende Phänomene werden analysiert und durch generische Beispiele illustriert.
LernzielEinführung in die Einteilchen Quantenmechanik. Beherrschung grundlegender Ideen (Quantisierung, Operatorformalismus, Symmetrien, Störungstheorie) und generischer Beispiele und Anwendungen (gebunden Zustände, Tunneleffekt, Streutheorie in ein- und dreidimensionalen Problemen). Fähigkeit zur Lösung einfacher Probleme.
InhaltStichworte: Schrödinger-Gleichung, Formalismus der Quantenmechanik (Zustände, Operatoren, Kommutatoren, Messprozess), Symmetrien (Translation, Rotationen), Quantenmechanik in einer Dimension, Zentralkraftprobleme, Potentialstreuung, Störungstheorie, Variations-Verfahren, Drehimpuls, Spin, Drehimpulsaddition, Relation QM und klassische Physik.
LiteraturF. Schwabl: Quantenmechanik
J.J. Sakurai: Modern Quantum Mechanics
W. Nolting: Quantenmechanik (Theoretische Physik 5.1, 5.2)
C. Cohen-Tannoudji: Quantenmechanik I
Kernfächer
Experimentalphysikalische Kernfächer
NummerTitelTypECTSUmfangDozierende
402-0263-00LAstrophysics I Information W10 KP3V + 2UA. Refregier
KurzbeschreibungThis introductory course will develop basic concepts in astrophysics as applied to the understanding of the physics of planets, stars, galaxies, and the Universe.
LernzielThe course provides an overview of fundamental concepts and physical processes in astrophysics with the dual goals of: i) illustrating physical principles through a variety of astrophysical applications; and ii) providing an overview of research topics in astrophysics.
402-0255-00LEinführung in die FestkörperphysikW10 KP3V + 2UK. Ensslin
KurzbeschreibungDie Vorlesung vermittelt die Grundlagen zur Physik kondensierter Materie und berührt einzelne Gebiete, welche später in Spezialvorlesungen eingehender behandelt werden. Im Stoff enthalten sind: Strukturen von Festkörpern, Interatomare Bindungen, elementare Anregungen, elektronische Eigenschaften von Isolatoren, Metalle, Halbleiter, Transportphänomene, Magnetismus, Supraleitung.
LernzielEinführung in die Physik der kondensierten Materie.
InhaltDie Vorlesung vermittelt die Grundlagen zur Physik kondensierter Materie und berührt einzelne Gebiete, welche später in Spezialvorlesungen eingehender behandelt werden. Im Stoff enthalten sind: Mögliche Formen von Festkörpern und deren Strukturen (Strukturklassifizierung und -bestimmung); Interatomare Bindungen; elementare Anregungen, elektronische Eigenschaften von Isolatoren, Metalle (klassische Theorie, quantenmechanische Beschreibung der Elektronenzustände, thermische Eigenschaften und Transportphänomene); Halbleiter (Bandstruktur, n/p-Typ Dotierungen, p/n-Kontakte); Magnetismus, Supraleitung
SkriptEin Skript wird verteilt.
LiteraturIbach & Lüth, Festkörperphysik
C. Kittel, Festkörperphysik
Ashcroft & Mermin, Festkörperphysik
W. Känzig, Kondensierte Materie
Voraussetzungen / BesonderesVoraussetzungen: Physik I, II, III wünschenswert
Theoretische Kernfächer
NummerTitelTypECTSUmfangDozierende
402-0205-00LQuantenmechanik I Information W10 KP3V + 2UT. K. Gehrmann
KurzbeschreibungEinführung in die nicht-relativistische Einteilchen-Quantenmechanik. Diskussion grundlegender Ideen der Quantenmechanik, insbesondere Quantisierung klassischer Systeme, Wellenfunktionen und die Beschreibung von Observablen durch Operatoren auf einem Hilbertraum, und die Analyse von Symmetrien. Grundlegende Phänomene werden analysiert und durch generische Beispiele illustriert.
LernzielEinführung in die Einteilchen Quantenmechanik. Beherrschung grundlegender Ideen (Quantisierung, Operatorformalismus, Symmetrien, Störungstheorie) und generischer Beispiele und Anwendungen (gebunden Zustände, Tunneleffekt, Streutheorie in ein- und dreidimensionalen Problemen). Fähigkeit zur Lösung einfacher Probleme.
InhaltStichworte: Schrödinger-Gleichung, Formalismus der Quantenmechanik (Zustände, Operatoren, Kommutatoren, Messprozess), Symmetrien (Translation, Rotationen), Quantenmechanik in einer Dimension, Zentralkraftprobleme, Potentialstreuung, Störungstheorie, Variations-Verfahren, Drehimpuls, Spin, Drehimpulsaddition, Relation QM und klassische Physik.
LiteraturF. Schwabl: Quantenmechanik
J.J. Sakurai: Modern Quantum Mechanics
W. Nolting: Quantenmechanik (Theoretische Physik 5.1, 5.2)
C. Cohen-Tannoudji: Quantenmechanik I
Praktika
NummerTitelTypECTSUmfangDozierende
402-0000-01LEinführung in das Experimentieren I Information O4 KP1V + 4PA. Biland, M. Doebeli, M. Kroner, S. P. Quanz
KurzbeschreibungPraktische Einführung in die Grundlagen der Experimentalphysik mit begleitender Vorlesung
LernzielÜbergeordnetes Thema des Praktikums und der Vorlesung ist die Auseinandersetzung mit den grundlegenden Herausforderungen eines physikalischen Experimentes. Am Beispiel einfacher experimenteller Aufbauten und Aufgaben stehen vor allem folgende Gesichtspunkte im Vordergrund:

- Motivation und Herangehensweise in der Experimentalphysik
- Praktischer Aufbau von Experimenten und grundlegende Kenntnisse von Messmethoden und Instrumenten
- Einführung in relevante statistische Methoden der Datenauswertung und Fehleranalyse
- Kritische Beurteilung und Interpretation der Beobachtungen und Ergebnisse
- Darstellen und Kommunizieren der Ergebnisse mit Graphiken und Text
- Ethische Aspekte der experimentellen Forschung und wissenschaftlicher Kommunikation
InhaltVersuche zu Themen aus den Bereichen der Mechanik, Optik, Wärme, Elektrizität und Kernphysik mit begleitender Vorlesung zur Vertiefung des Verständnisses der Datenanalyse und Interpretation
SkriptAnleitung zum Physikalischen Praktikum; Vorlesungsskript
Voraussetzungen / BesonderesAus einer Liste von 33 Versuchen müssen 9 Versuche in Zweiergruppen durchgeführt werden.

Am ersten Termin findet nur eine dreistündige Einführungsveranstaltung im Hörsaal statt und es werden noch keine Experimente durchgeführt.
402-0241-00LFortgeschrittenes Experimentieren I Information Belegung eingeschränkt - Details anzeigen
WICHTIG: Diese Lehrveranstaltung darf nur einmal in Rahmen des Bachelor-Studiums belegt werden.
O9 KP18PC. Grab, T. M. Ihn
KurzbeschreibungDas Praktikum ist die Grundschulung für selbständiges Experimentieren. Dazu gehören Planung, Aufbau, Durchführung, Auswertung und Interpretation physikalischer Experimente, sowie die Abschätzung der Messgenauigkeit. Schriftliche Anleitungen der einzelnen Versuche sind vorhanden.
Lernziel
402-0240-00LFortgeschrittenes Experimentieren II Information Belegung eingeschränkt - Details anzeigen
Voraussetzung: "Fortgeschrittenes Experimentieren I" abgeschlossen. Wenn Sie Fortgeschrittenes Experimentieren I noch nicht belegt hatten, schreiben Sie sich bitte dafür zuerst ein.

Bitte belegen Sie diese Veranstaltung im Rahmen Ihres Bachelor-Studiums höchstens einmal!
W9 KP18PC. Grab, T. M. Ihn
KurzbeschreibungDas Praktikum ist die Grundschulung für selbständiges Experimentieren. Durchführung von physikalischen Experimenten nach schriftlicher Anleitung. Planung, Aufbau, Durchführung, Auswertung und Interpretation physikalischer Experimente. Abschätzung der Messgenauigkeit.
LernzielStudierende sollen lernen, selbständig etwas komplexere Experimente durchzufuehren, die Daten auszuwerten und zu interpretieren.
Proseminare, experimentelle und theoretische Semesterarbeiten
Zur Durchführung einer Semesterarbeit treten Sie direkt in Verbindung mit einem oder einer der Dozierenden.

Nicht alle Dozierenden lassen sich in myStudies direkt auswählen, wenn als Dozierende "Professoren/innen" verlangt sind. In solchen Fällen wenden Sie sich bitte an das Studiensekretariat (www.phys.ethz.ch/de/studium/studiensekretariat.html).
NummerTitelTypECTSUmfangDozierende
402-0210-96LProseminar Theoretical Physics: Solitons and Instantons in Condensed Matter Information Belegung eingeschränkt - Details anzeigen
Maximale Teilnehmerzahl: 24
W9 KP4SV. Geshkenbein
KurzbeschreibungA guided self-study of original papers and of advanced textbooks in theoretical physics. Within the general topic, determined each semester, participants give a presentation on a particular subject and deliver a written report.
Lernziel
402-0217-BSLTheoretische Semesterarbeit in einer Gruppe des Physikdepartements Belegung eingeschränkt - Details anzeigen
Betreuer: C. Anastasiou, N. Beisert, G. Blatter, P. De Forcrand, M. Gaberdiel, A. Gehrmann-De Ridder, V. Geshkenbein, G. M. Graf, S. Huber, A. Lazopoulos, R. Renner, T. C. Schulthess, M. Sigrist, M. Troyer, O. Zilberberg
W9 KP18ABetreuer/innen
KurzbeschreibungDiese Lerneinheit stellt eine Alternative dar, falls kein geeignetes "Proseminar Theoretische Physik" angeboten wird oder schon alle Plätze ausgebucht sind.
Lernziel
Voraussetzungen / BesonderesDie Leistungskontrolle erfolgt aufgrund eines oder mehrerer schriftlicher Berichte bzw. einer schriftlichen Arbeit. Vorträge können ein zusätzlicher Bestandteil der Leistungskontrolle sein.
  •  Seite  1  von  4 Nächste Seite Letzte Seite     Alle