Search result: Catalogue data in Autumn Semester 2024

Environmental Engineering Bachelor Information
Bachelor Studies (Programme Regulations 2022)
First Year Compulsory Courses
First Year Examinations
First Year Examination Block A
NumberTitleTypeECTSHoursLecturers
401-0141-00LLinear Algebra Restricted registration - show details O5 credits4V + 1UM. Akka Ginosar, R. Prohaska
AbstractIntroduction to Linear Algebra
Learning objectiveBasic knowledge of linear algebra as a tool for solving engineering problems.
Understanding of abstract mathematical formulation of technical and scientific problems. Together with Analysis we develop the basic mathematical knowledge for an engineer.
ContentIntroduction and linear systems of equations, matrices, quadratic matrices, determinants and traces, general vector spaces, linear mappings, bases, diagonalization, eigenvalues and eigenvectors, orthogonal transformations, scalar-product, inner product spaces, Gram-Schmidt process.
Lecture notesThe lecturer will provide course notes.
LiteratureK. Nipp, D. Stoffer, Lineare Algebra, VdF Hochschulverlag ETH

G. Strang, Lineare Algebra, Springer

Larson, Ron. Elementary linear algebra. Nelson Education, 2016. (Englisch)
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Problem-solvingassessed
Personal CompetenciesCritical Thinkingfostered
252-0845-00LComputer Science I Information O5 credits2V + 2UM. Lüthi, A. Streich
AbstractThe course covers the basic concepts of computer programming.
Learning objectiveBasic understanding of programming concepts. Students will be able to write and read simple programs and to modify existing programs. In the course "Computer Science I", the competency of programming is taught, applied and examined. Furthermore modeling is taught and applied.
Contentvariables, types, control structures, functions, scoping, recursion, object-oriented programming. The programming language is Python.
Lecture notesThe slides and lecture notes will be made available for download on the course website.
LiteratureLearn to Code by Solving Problems
A Python Programming Primer
Daniel Zingaro

Python Crash Course
A Hands-On, Project-Based Introduction to Programming
Eric Matthes

Python for Data Analysis
Data wrangling with pandas, NumPy & Jupyter, 3rd Edition
Wes McKinney
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Problem-solvingassessed
Personal CompetenciesCreative Thinkingassessed
Critical Thinkingassessed
701-0243-01LBiology III: Essentials of EcologyO3 credits2VJ. Alexander
AbstractThis introductory lecture in ecology covers basic ecological concepts and the most important levels of complexity in ecological research. Ecological concepts are exemplified by using aquatic and terrestrial systems; corresponding methodological approaches are demonstrated. Threats to biodiversity and the appropriate management are discussed.
Learning objectiveThe objective of this lecture is to teach basic ecological concepts and the different levels of complexity in ecological research.
The students should learn ecological concepts at these different levels in the context of concrete examples from terrestrial and aquatic ecology. Corresponding methods for studying the systems will be presented.
A further aim of the lecture is that students achieve an understanding of biodiversity, why it is threatened and how it can be managed.
Content- Biodiversity: variation, threats and conservation
- Influence of environmental factors on organisms; adaptation to environmental conditions
- Population dynamics: causes, description, prediction and regulation
- Interactions between species (competition, coexistence, predation, parasitism, food webs)
- Ecological communities: structure, stability, succession
- Ecosystems: compartments, material and energy flows
Lecture notesDocuments, lecture slides, exercises and relevant literature are available in Moodle. The documents for the next lecture will be available on Friday morning at the latest.
LiteratureRequired reading: Begon, M.E., Howarth, R.W., Townsend, C.R. (2017): Ökologie. 3. Aufl. Springer Verlag, Berlin.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesfostered
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingfostered
Problem-solvingfostered
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Sensitivity to Diversityfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingfostered
Critical Thinkingfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
151-0223-10LEngineering MechanicsO4 credits2V + 2U + 1KP. Tiso
AbstractIntroduction to engineering mechanics: kinematics, statics and dynamics of rigid bodies and systems of rigid bodies.
Learning objectiveBy learning the basics of kinematics, statics and dynamics, students should gain a basic understanding of the subject matter with which simple problems in engineering mechanics can be analyzed and solved. Based on this, further lectures, which require knowledge of mechanics, can be attended.
ContentBasic notions: position and velocity of particles, rigid bodies, planar motion, kinematics of rigid bodies, force, torque, power.
Statics: static equivalence, center of forces, centroid, principle of virtual power, equilibrium, constraints, analytical statics, friction.
Dynamics: acceleration, inertial forces, d'Alembert's Principle, Newton's Second Law, principles of linear and angular momentum, equations of planar motion of rigid bodies.
Lecture notesyes, in German
LiteratureM. B. Sayir, J. Dual, S. Kaufmann, E. Mazza: Ingenieurmechanik 1, Grundlagen und Statik. Springer Vieweg, Wiesbaden, 2015.
M. B. Sayir, S. Kaufmann: Ingenieurmechanik 3, Dynamik. Springer Vieweg, Wiesbaden, 2014.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Problem-solvingassessed
Social CompetenciesCooperation and Teamworkfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingfostered
Critical Thinkingfostered
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
  •  Page  1  of  1