Search result: Catalogue data in Autumn Semester 2024
Environmental Engineering Bachelor ![]() | |||||||||||||||||||||||||||||||||||||||||||||
![]() | |||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | |||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | |||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() | |||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
401-0141-00L | Linear Algebra ![]() | O | 5 credits | 4V + 1U | M. Akka Ginosar, R. Prohaska | ||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to Linear Algebra | ||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Basic knowledge of linear algebra as a tool for solving engineering problems. Understanding of abstract mathematical formulation of technical and scientific problems. Together with Analysis we develop the basic mathematical knowledge for an engineer. | ||||||||||||||||||||||||||||||||||||||||||||
Content | Introduction and linear systems of equations, matrices, quadratic matrices, determinants and traces, general vector spaces, linear mappings, bases, diagonalization, eigenvalues and eigenvectors, orthogonal transformations, scalar-product, inner product spaces, Gram-Schmidt process. | ||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | The lecturer will provide course notes. | ||||||||||||||||||||||||||||||||||||||||||||
Literature | K. Nipp, D. Stoffer, Lineare Algebra, VdF Hochschulverlag ETH G. Strang, Lineare Algebra, Springer Larson, Ron. Elementary linear algebra. Nelson Education, 2016. (Englisch) | ||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| ||||||||||||||||||||||||||||||||||||||||||||
252-0845-00L | Computer Science I ![]() | O | 5 credits | 2V + 2U | M. Lüthi, A. Streich | ||||||||||||||||||||||||||||||||||||||||
Abstract | The course covers the basic concepts of computer programming. | ||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Basic understanding of programming concepts. Students will be able to write and read simple programs and to modify existing programs. In the course "Computer Science I", the competency of programming is taught, applied and examined. Furthermore modeling is taught and applied. | ||||||||||||||||||||||||||||||||||||||||||||
Content | variables, types, control structures, functions, scoping, recursion, object-oriented programming. The programming language is Python. | ||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | The slides and lecture notes will be made available for download on the course website. | ||||||||||||||||||||||||||||||||||||||||||||
Literature | Learn to Code by Solving Problems A Python Programming Primer Daniel Zingaro Python Crash Course A Hands-On, Project-Based Introduction to Programming Eric Matthes Python for Data Analysis Data wrangling with pandas, NumPy & Jupyter, 3rd Edition Wes McKinney | ||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| ||||||||||||||||||||||||||||||||||||||||||||
701-0243-01L | Biology III: Essentials of Ecology | O | 3 credits | 2V | J. Alexander | ||||||||||||||||||||||||||||||||||||||||
Abstract | This introductory lecture in ecology covers basic ecological concepts and the most important levels of complexity in ecological research. Ecological concepts are exemplified by using aquatic and terrestrial systems; corresponding methodological approaches are demonstrated. Threats to biodiversity and the appropriate management are discussed. | ||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The objective of this lecture is to teach basic ecological concepts and the different levels of complexity in ecological research. The students should learn ecological concepts at these different levels in the context of concrete examples from terrestrial and aquatic ecology. Corresponding methods for studying the systems will be presented. A further aim of the lecture is that students achieve an understanding of biodiversity, why it is threatened and how it can be managed. | ||||||||||||||||||||||||||||||||||||||||||||
Content | - Biodiversity: variation, threats and conservation - Influence of environmental factors on organisms; adaptation to environmental conditions - Population dynamics: causes, description, prediction and regulation - Interactions between species (competition, coexistence, predation, parasitism, food webs) - Ecological communities: structure, stability, succession - Ecosystems: compartments, material and energy flows | ||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Documents, lecture slides, exercises and relevant literature are available in Moodle. The documents for the next lecture will be available on Friday morning at the latest. | ||||||||||||||||||||||||||||||||||||||||||||
Literature | Required reading: Begon, M.E., Howarth, R.W., Townsend, C.R. (2017): Ökologie. 3. Aufl. Springer Verlag, Berlin. | ||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| ||||||||||||||||||||||||||||||||||||||||||||
151-0223-10L | Engineering Mechanics | O | 4 credits | 2V + 2U + 1K | P. Tiso | ||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to engineering mechanics: kinematics, statics and dynamics of rigid bodies and systems of rigid bodies. | ||||||||||||||||||||||||||||||||||||||||||||
Learning objective | By learning the basics of kinematics, statics and dynamics, students should gain a basic understanding of the subject matter with which simple problems in engineering mechanics can be analyzed and solved. Based on this, further lectures, which require knowledge of mechanics, can be attended. | ||||||||||||||||||||||||||||||||||||||||||||
Content | Basic notions: position and velocity of particles, rigid bodies, planar motion, kinematics of rigid bodies, force, torque, power. Statics: static equivalence, center of forces, centroid, principle of virtual power, equilibrium, constraints, analytical statics, friction. Dynamics: acceleration, inertial forces, d'Alembert's Principle, Newton's Second Law, principles of linear and angular momentum, equations of planar motion of rigid bodies. | ||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | yes, in German | ||||||||||||||||||||||||||||||||||||||||||||
Literature | M. B. Sayir, J. Dual, S. Kaufmann, E. Mazza: Ingenieurmechanik 1, Grundlagen und Statik. Springer Vieweg, Wiesbaden, 2015. M. B. Sayir, S. Kaufmann: Ingenieurmechanik 3, Dynamik. Springer Vieweg, Wiesbaden, 2014. | ||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
|
Page 1 of 1