Search result: Catalogue data in Autumn Semester 2024

Environmental Engineering Bachelor Information
Bachelor Studies (Programme Regulations 2022)
Subject-Specific Electives
River and Hydraulic Engineering
NumberTitleTypeECTSHoursLecturers
101-1249-00LHydraulics of Engineering StructuresW3 credits2GI. Albayrak, F. Evers
AbstractHydraulic fundamentals are applied to hydraulic structures for wastewater, flood protection and hydropower. Typical case studies from engineering practice are further described.
Learning objectiveUnderstanding and quantification of fundamental hydraulic processes with particular focus on hydraulic structures for wastewater, flood protection and hydropower.

In the course "Hydraulics of Engineering Structures", the competencies of process understanding, system understanding and measurement methods are taught, applied and examined. The competencies modeling, concept development and data analysis & interpretation are taught and data analysis & interpretation is applied in addition.
Content1. Introduction & Basic equations
2. Losses in flow & Maximum discharge
3. Uniform flow & Critical flow
4. Hydraulic jump & Stilling basin
5. Backwater curves
6. Weirs & End overfall
7. Sideweir & Side channel
8. Bottom opening, Venturi & Culverts, Restrictors, Inverted siphons
9. Fall manholes & Vortex drop
10. Supercritical flow & Special manholes
11. Aerated flows & Low level outlets
12. Hydraulics of sediment bypass tunnels
13. Vegetated flows - Introduction & Application
14. Summary
Lecture notesText books

Hager, W.H. (2010). Wastewater hydraulics. Springer: New York.
LiteratureExhaustive references are contained in the suggested text book.
101-0113-10LTheory of Structures (for Environmental Engineering) Information Restricted registration - show details W3 credits2.5GB. Sudret
AbstractIntroduction to structural mechanics, statically determinate beams and frame structures, trusses. Stresses in statically determinate structures.
Learning objective- Understanding the response of elastic beam and frame structures
- Ability to correctly apply the equilibrium conditions
- Understanding the basics of continuum mechanics
- Computation of stresses in elastic structures

In the course "Theory of Structures (for Environmental Engineering)", the competencies of process understanding, system understanding and modeling are taught and applied. The competence process understanding and system understanding are examined, too.
Content- Equilibrium, reactions, static determinacy
- Internal forces (normal and shear forces, moments)
- Arches and cables
- Elastic trusses
- Influence lines
- Basics of continuum mechanics
- Stresses in elastic beams
Lecture notesBruno Sudret, "Einführung in die Baustatik", 2021
Available on Moodle with exercises.
LiteratureB. Sudret, Baustatik - eine Einführung, 2022, Springer Vieweg.
https://link.springer.com/book/10.1007/978-3-658-35255-4
Sustainable Urban Space
NumberTitleTypeECTSHoursLecturers
102-0215-00LUrban Water Management II Information W4 credits2GP. Staufer
AbstractWelche Methoden stehen uns in der Siedlungsentwässerung zu Verfügung, um angesichts neuer Chemikalien und des Klimawandels auch in Zukunft für lebendige Gewässer zu sorgen? Dieser Frage soll mithilfe von Vorlesungen, Übungen und der Modellierung von relitätsnahen Aufgabestellungen aus "Generellen Entwässerungsplänen (GEP)" nachgegangen werden.
Learning objectiveVertiefung der Grundlagen für die Dimensionierung anspruchsvoller Bauwerke mithilfe der numerischen Simulation und Darstellung der Ergebnisse für Zielgruppen in der schweizerischen Wasserwirtschaft.
ContentGenerelle Entwässerungsplanung (GEP)
- Siedlungshydrologie: Niederschlag, Abflussbildung
- Stofftransport in der Kanalisation
- Emissions- und Immissionsbetrachtungen, Einleitbedingungen
- Versickerung von Regenwasser
- Blau-grüne Infrastrukturen (BGI)
Lecture notesDie schriftlichen Unterlagen stehen digital zur Verfügung.
Prerequisites / NoticeAls Voraussetzung wird der Besuch der Lernveranstaltung "Siedlungswasserwirtschaft GZ" empfohlen.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Media and Digital Technologiesfostered
Problem-solvingassessed
Project Managementfostered
Social CompetenciesCommunicationassessed
Cooperation and Teamworkfostered
Customer Orientationfostered
Personal CompetenciesCreative Thinkingfostered
Critical Thinkingassessed
Self-direction and Self-management fostered
103-0313-00LBasics of Spatial Planning and Landscape Development Information W5 credits4GG. Debrunner, S. Hauller, D. Jerjen
AbstractThe lecture introduces the main-features of Swiss spatial planning. Core subjects are e.g., spatial planning as a federal responsibility, spatial planning instruments (federal, cantonal, municipal), as well as systematic problem solving techniques and methodologies of spatial planning. The lecture is complemented with in-depth topics and comparative international examples.
Learning objectiveDie Studierenden kennen die Grundzüge der Schweizer Raumplanung, ihre wichtigen Instrumente auf nationaler, kantonaler, regionaler und kommunaler Ebene und systematische Problemlösungsverfahren. Sie können das vermittelte theoretische Wissen direkt an konkreten, praxisorientierten Übungsaufgaben umsetzen.

- Grundzüge der Raumplanung und ihre wichtigsten Instrumente kennenlernen
- Erarbeiten der Fähigkeit, räumliche Probleme zu erkennen und Problemlösungsverfahren auf diese anzuwenden
- Planung und Landnutzungsmanagement als interaktiven und akteursbezogenen Prozess kennenlernen und anwenden
- Verstehen der mit Ressourcen und Boden verbundenen Potentiale, Nutzungen und Prozesse
- Das vermittelte theoretische Wissen direkt an konkreten, praxisorientierten Fallbeispielen umsetzen können
ContentDie Vorlesung deckt die Grundlagen der (Schweizerischen) Raumplanung und Landschaftsentwicklung ab:

- Was ist Raumplanung (Definitionen und Begriffe)
- Aktuelle Herausforderungen, Entwicklungen und Tendenzen der Raumplanung
- Grundprinzipien, historische Entwicklung und Gesetzgebungen der Schweizer Raumplanung
- Die Raumplanung als staatliche Aufgabe – Raumordnungspolitik auf Bundesebene
- Instrumente der Raumplanung auf nationaler, kantonaler, regionaler und kommunaler Ebene (u.a. Sachpläne und Konzepte, Richtplanung, Nutzungsplanung, Sondernutzungsplanung, Mehrwertausgleich)
- Problemlösungsverfahren in der Raumplanung – systemtechnisches Vorgehen
- Thematische Vertiefungen: Siedlungsentwicklung nach innen; Klimaangepasste Raumplanung; Grundeigentum und kooperative Planung; Raumbeobachtung

Der Schwerpunkt der Vorlesung liegt auf der Raumplanungspolitik des Bundes, der Kantone und der Gemeinden sowie auf den jeweiligen Ebenen eingesetzten Raumplanungsinstrumenten. Das dabei vermittelte theoretische Wissen wird direkt an einer konkreten, praxisorientierten Übungsaufgabe – in direkter Zusammenarbeit mit einer Zürcher Agglomerationsgemeinde – umgesetzt. Im Rahmen der Übung wird das Projektgebiet während einer Exkursion besucht und eine Gebietsentwicklung im Bestand als Fallbeispiel behandelt.
Lecture notesSkript und einzelne Dokumente werden ausgegeben. Unterlagen zur Vorlesung werden auf der SPUR-Kursseite und/oder auf Moodle direkt zur Verfügung gestellt.
Literature•Lendi, M. 2006. Zur Geschichte der schweizerischen Raumplanung, disP – The Planning Review, 42:167, 66-83, DOI: 10.1080/02513625.2006.10556969
•Koll-Schretzenmayr, M. 2008. Gelungen–Misslungen? Die Geschichte der Raumplanung Schweiz. Zürich: Verlag Neue Zürcher Zeitung.
•Knoepfel, P., Larrue, C., Varone, F., & Veit, S. 2011. Politikanalyse. Stuttgart: UTB.
•Gerber, J.D.; Hartmann, T.; Hengstermann, A. 2018. Instruments of Land Policy. Dealing with Scarcity of Land, New York: Routledge.
•Schwick, C.; Jaeger, J.; Hersperger, A.; Cathomas, G.; Muggli, R. 2018. Zersiedlung messen und begrenzen – Massnahmen und Zielvorgaben für die Schweiz, ihre Kantone und Gemeinden. Zürich, Bristol-Stiftung; Bern, Haupt.
•Schneider, A.; Gilgen, A. 2021. Kommunale Raumplanung in der Schweiz, vdf Hochschulverlag AG, ETH Zürich.
•Debrunner, G.; Hengstermann, A. 2023. Vier Thesen zur effektiven Umsetzung der Innenentwicklung in der Schweiz, disP – The Planning Review, 59:1, 86-97, DOI: 10.1080/02513625.2023.2229632
•Debrunner, G. (2024): The Business of Densification. Governing Land for Social Sustainability in Housing. London: Palgrave Macmillan. https://doi.org/10.1007/978-3-031-49014-9
•EspaceSuisse (2021): Lehrbuch Einführung in die Raumplanung, Bern.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesfostered
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Media and Digital Technologiesfostered
Problem-solvingassessed
Project Managementfostered
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Customer Orientationfostered
Leadership and Responsibilityfostered
Self-presentation and Social Influence fostered
Sensitivity to Diversityfostered
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingfostered
Critical Thinkingfostered
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
Environment and Water
NumberTitleTypeECTSHoursLecturers
651-3561-00LCryosphereW3 credits2VM. Huss, D. Farinotti, H. J. Horgan
AbstractThe course introduces the different components of the cryosphere - snow, glaciers, ice sheets, sea ice and lake ice, and permafrost - and their respective roles in the climate system. For each subsystem, essential physical aspects are emphasized, and their dynamics are described quantitatively and using examples.
Learning objectiveStudents are able to
- qualitatively explain relevant processes, feedbacks and relationships between the different components of the cryosphere,
- quantify and interpret physical processes, which determine the state of the cryospheric components, with simple calculations.

In the course "Cryosphere", the competencies of process understanding, modeling, data analysis & interpretation and measurement methods are taught, applied and examined. System understanding is taught and examined.
ContentThe course provides an introduction into the various components of the cryosphere: snow, glaciers, ice sheets, sea ice and lake ice, permafrost, and their roles in the climate system. Essential physical aspects are emphasized for each subsystem: e.g. the material properties of ice, mass balance and dynamics of glaciers, or the energy balance of sea ice.
Lecture notesHandouts will be distributed during the teaching semester
LiteratureBenn, D., & Evans, D. J. (2014). Glaciers and glaciation. Routledge.
Cuffey, K. M., & Paterson, W. S. B. (2010). The physics of glaciers. Academic Press.
Hooke, R. L. (2019). Principles of glacier mechanics. Cambridge University Press.

Further literature will be indicated during the lecture.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesfostered
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingfostered
Media and Digital Technologiesassessed
Problem-solvingassessed
Social CompetenciesCommunicationfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingfostered
Critical Thinkingfostered
Integrity and Work Ethicsfostered
Self-direction and Self-management fostered
701-0479-00LEnvironmental Fluid Dynamics Information W3 credits2GH. Wernli, L. Papritz
AbstractThis course covers the basic physical concepts and mathematical equations used to describe environmental fluid systems on the rotating Earth. Fundamental concepts (e.g. vorticity dynamics and waves) are formally introduced, applied quantitatively and illustrated using examples. Exercises help to deepen knowledge of the material.
Learning objectiveStudents are able
- to name the basics, concepts and methods of environmental fluid dynamics.
- to understand and discuss the components of the basic physical equations
- to mathematically solve basic equations for simple problems of environmental fluid dynamics.
The competencies of process understanding and system understanding are taught, applied and examined.
ContentBasic physial terminology and mathematical laws:
Continuum hypothesis, forces, constitutive laws, state equations and basic principles of thermodynamics, kinematics, laws of mass and momentum on rotating earth.
Concepts and illustrative flow sytems: vorticity dynamics, boundary layers, instability, turbulence - with respect to environmental fluid systems.
Scale analysis: dimensionles variables and dynamical similarity, simplification of the fluid system, e.g. shallow water assumption, geostrophic flow.
Waves in environmental fluid systems.
Lecture notesIn english language
LiteratureWill be presnted in class.
See also: web-site.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Problem-solvingassessed
Personal CompetenciesCreative Thinkingassessed
Critical Thinkingassessed
701-0561-00LForest Ecology Information W3 credits2VH. Bugmann
AbstractThis course conveys the basics of forest ecology with an emphasis on trees as those organisms that dominate the physiognomy and the dynamics of forest ecosystems. Based on this course, students have a good grasp of the qualitative and quantitative importance of forest ecosystems at the global and regional scales, with a focus on central Europe.
Learning objectiveStudents are able to
- summarize the fundamentals of forest ecology at the autecological, demecological and synecological level
- explain how trees dominate the physiognomy and dynamics of forest ecosystems
- describe the qualitative and quantitative importance of forest ecosystems at the global and regional scales, with an emphasis on central Europe and Alpine region.

Overall, the competences of process understanding, system understanding, modeling, concept development and data analysis & interpretation are taught and examined in this course.
ContentIntroduction and overview of the forests of the world
Forest ecosystem ecology: Production ecology of forests
Autecology: light, temperature, wind, water, and nutrients
Demecology: regeneration ecology, forest growth, mortality
Synecology: fundamentals of trophic interactions (forest-ungulate interactions), succession
Lecture notesHandouts are available for download from https://fe.ethz.ch/studium/lehrmaterialien/bachelor/waldoekologie.html.
LiteratureKimmins, J.P., 2004. Forest Ecology. Third ed., Pearson-Prentice Hall
Prerequisites / NoticeThe contents of the following courses of the 2nd year of the USYS BSc are required:

Pedosphere, Hydrosphere, Fundamentals of biology and ecology, Introduction to dendrology (knowledge of European tree species).
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Personal CompetenciesCreative Thinkingassessed
Critical Thinkingassessed
Climate and Air
NumberTitleTypeECTSHoursLecturers
701-0023-00LAtmosphere Information W3 credits2VE. Fischer, U. Lohmann
AbstractBasic principles of the atmosphere, physical structure and chemical composition, trace gases, atmospheric cycles, circulation, stability, radiation, condensation, clouds, oxidation capacity and ozone layer.
Learning objectiveStudents are able
- to explain the physical structure and chemical composition of the atmosphere
- to quantitatively describe and understand the fundamental physical and chemical process in the atmosphere
- to explain the interactions and feedbacks between atmosphere - ocean - land surface, troposphere - stratosphere and weather - climate.

In the course "Atmosphere", the competencies of process understanding, system understanding and data analysis & interpretation are taught, applied and examined.
ContentBasic principles of the atmosphere, physical structure and chemical composition, trace gases, atmospheric cycles, circulation, stability, radiation, condensation, clouds.
Lecture notesWritten information will be supplied.
Literature- Wallace, J. M., and Hobbs, P. V. Atmospheric science: an introductory survey. 2nd ed. Amsterdam; Boston, Elsevier Academic Press, 2006.
- Gösta H. Liljequist, Allgemeine Meteorologie, Vieweg, Braunschweig, 1974.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingfostered
Problem-solvingassessed
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Sensitivity to Diversityfostered
Personal CompetenciesCreative Thinkingfostered
Critical Thinkingfostered
Self-awareness and Self-reflection fostered
701-0475-00LAtmospheric Physics Information Restricted registration - show details W3 credits2GU. Lohmann
AbstractThis course covers the basics of atmospheric physics, which consist of: cloud and precipitation formation, especially prediction of showers and severe convective storms, and optical phenomena
Learning objectiveStudents are able
- to explain the mechanisms of convective storm formation using knowledge of thermodynamics and cloud microphysics.
- to interpret precipitation radar images
- to evaluate the significance of clouds and aerosol particles for artificial weather modification.

In the course "Atmospheric Physics", the competencies of process understanding, system understanding and data analysis & interpretation are taught, applied and examined. Measurement methods are taught as well.
ContentThe course starts with introducing selected concepts of thermodynamics for atmospheric processes: The students learn the concept of the thermodynamic equilibrium and derive the Clausius-Clayperon equation from the first law of thermodynamics. This equation is central for the phase transitions in clouds.

Students also learn to use thermodynamic charts (tephigrams) and to identify cloud base, cloud top, available convective energy in radiosonde ascents. Atmospheric mixing processes are introduced as a basis for fog formation. The concept of an air parcel is used to understand convection.

Aerosol particles are introduced in terms of their physical properties and their role in cloud formation based on Köhler theory. Thereafter cloud microphysical processes including ice nucleation are discussed.

With these basics, the different forms of precipitation (convective vs. stratiform) are discussed and how they can be identified in radar images. Students will also learn under which conditions severe convective storms (especially supercells with tornados) can form.

The concepts are applied to understand and judge the validity of different proposed artificial weather modification ideas.
Lecture notesPowerpoint slides and chapters from the textbook will be made available on moodle: https://moodle-app2.let.ethz.ch/course/view.php?id=22731
LiteratureLohmann, U., Lüönd, F. and Mahrt, F., An Introduction to Clouds:
From the Microscale to Climate, Cambridge Univ. Press, 391 pp., 2016.

An electronic version of this book can be obtained via the ETH library.

pdf-files of the revised book will be provided on moodle on a chapter-by-chapter basis.
Prerequisites / NoticeWe offer a lab tour, in which we demonstrate how some of the processes discussed in the lectures are measured with instruments.

There is a additional tutorial right after each lecture to give you the chance to ask further questions and discuss the exercises. The participation is recommended but voluntary.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesfostered
Method-specific CompetenciesAnalytical Competenciesassessed
Problem-solvingassessed
Social CompetenciesCommunicationassessed
Personal CompetenciesCritical Thinkingassessed
Self-direction and Self-management assessed
102-0535-00LNoise AbatementW5 credits4GJ. M. Wunderli
AbstractBasics of acoustics and hearing. Measurement of sound. Impact of noise (physiological, psychological, social, economic). Legislation (focus on Swiss noise abatement ordinance), spatial planning. Sound propagation outdoor and in buildings. Calculation models and measurement procedures. Traffic noise (roads, railways, airports), shooting noise, noise from industrial plants. Building acoustics.
Learning objectiveThe students will understand the basics of noise abatement: acoustics, impact of noise, meas-urement techniques and legislation. The students will be able to analyze different noise prob-lems and they will be able to solve simple problems of noise abatement.

In the course "Noise Abatement", the competencies of process understanding, modeling, data analysis & interpretation and measurement methods are taught, applied and examined. System understanding is taught and examined.
ContentPhysikalische Grundlagen: Schalldruck, Wellen, Quellenarten.
Akustische Messtechnik: Umgang mit Dezibel, Akustische Masse, Schallpegelmesser, Spektralanalyse.
Lärmwirkungen: Gehör, Gesundheitliche Wirkungen von Lärm, Störung/Belästigung, Belastungsmasse.
Gesetzliche Grundlagen der Lärmbekämpfung / Raumplanung: Lärmschutzverordnung/SIA 181. Zusammenhang mit der Raumplanung.
Schallausbreitung im Freien: Abstandsgesetze, Luftdämpfung, Bodeneffekt, Abschirmung, Reflexion, Streuung, Bebauung, Wettereinflüsse.
Kurze Einführung in die Bauakustik und in die einfachsten Grundlagen der Raumakustik.
Eigenschaften von Schallquellen: Akustische Beschreibung von Schallquellen, Lärmminderung an der Quelle.
Lärmarten und Prognoseverfahren: Messen/Berechnen, Strassenlärm, Eisenbahnlärm, Fluglärm, Schiesslärm, Industrielärm.
Lecture notesSkript "Lärmbekämpfung" als PDF ab Beginn der Vorlesung verfügbar.
Prerequisites / Notice1 - 2 Exkursionen
Climate and Soil
NumberTitleTypeECTSHoursLecturers
101-0339-00LEnvironmental Geotechnics – Polluted Sites and Waste DisposalW3 credits2GM. Plötze
AbstractThe practice of landfilling, remediation of polluted sites and the disposal of radioactive waste are based on the same concepts of environmental protection. Understanding the contaminants behaviour and how to reduce their release to the environment is the key to remediating polluted sites and designing multi-barrier systems.
Learning objectiveOn successful completion of this course students will be able to
- Assess the risk to the environment from landfills, contaminated sites and radioactive waste repositories in terms of the fate and transport of contaminants.
- Describe the technologies available to minimise environmental contamination
- Describe the principles of dealing with polluted sites and propose and evaluate appropriate remediation techniques
- Explain the concepts underlying radioactive waste management practices.
ContentThis lecture course consists of lectures with exercises and case studies.
- An overview of the principles of environmental protection in waste management and how this is applied in legislation.
- An overview of the chemistry underlying the release and transport of contaminants from the landfilled/contaminated material/radioactive waste repository focusing on processes controlling mobility of heavy metals and organic compounds
- Introduction to contaminant transport in porous adsorbing media
- Design and function of engineered barriers. Clay as a barrier.
- Polluted site remediation: Site investigation, assessment, and remediation technologies
- Concepts and safety in radioactive waste management
- Role of the geological and engineered barriers and radionuclide transport in geological media.
Prerequisites / Noticeexcursion
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingfostered
Problem-solvingassessed
Project Managementfostered
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Customer Orientationfostered
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingassessed
Critical Thinkingassessed
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
701-0501-00LPedosphereW3 credits2VR. Kretzschmar
AbstractIntroduction to the formation and properties of soils as a function of parent rock, landscape position, climate, and soil organisms. Complex relationships between soil forming processes, physical and chemical soil properties, soil biota, and ecological soil properties are explained and illustrated by numerous examples.
Learning objectiveUnderstanding of soils as integral parts of ecosystems, development and distribution of soils as a function of environmental factors, and processes leading to soil degradation.

The course "Pedosphäre" teaches and examines the competences process understanding and systems understanding.
ContentDefinition of the pedosphere, soil functions, rocks as parent materials, minerals and weathering, soil organisms, soil organic matter, soil formation, principles of soil classification, global soil regions, physical soil properties and functions, chemical soil properties and functions, soil fertility, land use and soil degradation.
Lecture notesPolybook
Literature- Scheffer/Schachtschabel - Soil Science, Springer, Heidelberg, 2016.

- Brady N.C. and Weil, R.R. The Nature and Properties of Soils. 14th ed. Prentice Hall, 2007.
Prerequisites / NoticePrerequisites: Basic knowledge in chemistry, biology and geology.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Problem-solvingassessed
Personal CompetenciesCritical Thinkingfostered
701-0533-00LSoil and Water ChemistryW3 credits2GR. Kretzschmar, D. I. Christl, L. Winkel
AbstractThis course covers chemical and biogeochemical processes in soils and water and their influence on the behavior and cycling of nutrients and pollutants in terrestrial and aquatic systems. Approaches for quantitative modeling of the processes are introduced and applied in selected examples.
Learning objective1. Understanding of important chemical properties and processes of soils and water and their influence on the behavior (e.g., chemical speciation, bioavailability, mobility) of nutrients and pollutants.
2. Quantitative applications of chemical equilibria to processes in natural systems.

The course "Soil and Water Chemistry" teaches, applies and examines the competences process understanding, systems understanding, and modelling.
ContentChemical equilibria in aqueous solutions, gas equilibria, precipitation and dissolution of mineral phases, silicate weathering, weathering kinetics, formation of secondary minerals (clay minerals, oxides, sulfides), redox processes in natural systems, pH buffering and acidification, salinity and salinization, environmental behavior of selected essential and toxic trace elements.
Lecture notesLecture slides on Moodle
Literature–Chapters 1, 3, 4, 6, 7 and 11 in Sigg/Stumm – Aquatische Chemie, 6. Auflage, vdf, 2016.
–Chapter 2 and 5 in Scheffer/Schachtschabel – Lehrbuch der Bodenkunde, 17. Auflage, Springer Spektrum, 2018 (or English edition).
–Selected Chapters in: Encyclopedia of Soils in the Environment, 2005.
Prerequisites / NoticeThe lecture courses Pedosphere and Hydrosphere are highly recommended.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Problem-solvingassessed
Social CompetenciesCommunicationfostered
Personal CompetenciesCritical Thinkingfostered
Renewable Energies
NumberTitleTypeECTSHoursLecturers
151-1633-00LEnergy Conversion
This course is intended for students outside of D-MAVT.
W4 credits3GG. Sansavini, S. A. Hosseini, I. Karlin
AbstractThis course provides the students with an introduction to thermodynamics and energy conversion. Students shall gain basic understanding of energy and energy interactions as well as their link to energy conversion technologies.
Learning objectiveThermodynamics is key to understanding and use of energy conversion processes in Nature and technology. Main objective of this course is to give a compact introduction into basics of Thermodynamics: Thermodynamic states and thermodynamic processes; Work and Heat; First and Second Laws of Thermodynamics. Students shall learn how to use energy balance equation in the analysis of power cycles and shall be able to evaluate efficiency of internal combustion engines, gas turbines and steam power plants. The course shall extensively use thermodynamic charts to building up students’ intuition about opportunities and restrictions to increase useful work output of energy conversion. Thermodynamic functions such as entropy, enthalpy and free enthalpy shall be used to understand chemical and phase equilibrium. The course also gives introduction to refrigeration cycles, combustion and refrigeration. The course compactly covers the standard course of thermodynamics for engineers, with additional topics of a general physics interest (nonideal gas equation of state and Joule-Thomson effect) also included.

In the course "Energy Conversion", the competencies of process understanding and system understanding are applied and examined and the competencies process understanding and modeling are taught.
Content1. Thermodynamic systems, states and state variables
2. Properties of substances: Water, air and ideal gas
3. Energy conservation in closed and open systems: work, internal energy, heat and enthalpy
4. Second law of thermodynamics and entropy
5. Energy analysis of steam power cycles
6. Energy analysis of gas power cycles
7. Refrigeration and heat pump cycles
8. Nonideal gas equation of state and Joule-Thomson effect
9. Maximal work and exergy
10. Mixtures
11. Chemical reactions and combustion systems; chemical and phase equilibrium
Lecture notesLecture slides and supplementary documentation will be available online.
LiteratureThermodynamics: An Engineering Approach, by Cengel, Y. A. and Boles, M. A., McGraw Hill
Prerequisites / NoticeThis course is intended for students outside of D-MAVT.

Students are assumed to have an adequate background in calculus, physics, and engineering mechanics.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Media and Digital Technologiesfostered
Problem-solvingassessed
Project Managementfostered
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Customer Orientationfostered
Leadership and Responsibilityassessed
Self-presentation and Social Influence fostered
Sensitivity to Diversityfostered
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingassessed
Critical Thinkingassessed
Integrity and Work Ethicsassessed
Self-awareness and Self-reflection fostered
Self-direction and Self-management assessed
151-0221-00LIntroduction to Modeling and Optimization of Sustainable Energy SystemsW4 credits4GG. Sansavini, A. Bardow, S. Moret
AbstractThis course introduces the fundamentals of energy system modeling for the analysis and the optimization of the energy system design and operations.
Learning objectiveAt the end of this course, students will be able to:
- define and quantify the key performance indicators of sustainable energy systems;
- select and apply appropriate models for conversion, storage and transport of energy;
- develop mathematical models for the analysis, design and operations of multi-energy systems and solve them with appropriate mathematical tools;
- select and apply methodologies for the uncertainty analysis on energy systems models;
- apply the acquired knowledge to tackle the challenges of the energy transition.

In the course "Introduction to Modeling and Optimization of Sustainable Energy Systems", the competencies of process understanding, system understanding, modeling, concept development, data analysis & interpretation and measurement methods are taught, applied and examined. Programming is applied.
ContentThe global energy transition; Key performance indicators of sustainable energy systems; Optimization models; Heat integration and heat exchanger networks; Life-cycle assessment; Models for conversion, storage and transport technologies; Multi-energy systems; Design, operations and analysis of energy systems; Uncertainties in energy system modeling.
Lecture notesLecture slides and supplementary documentation will be available online. Reference to appropriate book chapters and scientific papers will be provided.
Excursions of Subject-specific electives
NumberTitleTypeECTSHoursLecturers
102-0000-10LExcursions for Environmental Engineers I Information
No registration through myStudies. The registration for excursions and field courses goes through http://exkursionen.umwelting.ethz.ch/ only.
W1 creditJ. Wang, further lecturers
AbstractHalf-day to one-day excursions as a supplement to the environmental engineering lectures.
Learning objectiveAs a supplement to the environmental engineering-specific lectures, the professorships offer half-day to one-day excursions in various subject areas.
During the excursions, the students deepen the specialist knowledge acquired in the lectures and self-study and establish a link to practice and research.
These excursions are open to all Bachelor's students of Environmental Engineering, depending on availability, and can be assessed with credit points as part of the subject-specific electives.
The excursions are voluntary and should preferably be attended from the 4th semester onwards.
102-0000-20LExcursions for Environmental Engineers II Information
No registration through myStudies. The registration for excursions and field courses goes through http://exkursionen.umwelting.ethz.ch/ only.
W1 creditJ. Wang, further lecturers
AbstractHalf-day to one-day excursions as a supplement to the environmental engineering lectures.
Learning objectiveAs a supplement to the environmental engineering-specific lectures, the professorships offer half-day to one-day excursions in various subject areas.
During the excursions, the students deepen the specialist knowledge acquired in the lectures and self-study and establish a link to practice and research.
These excursions are open to all Bachelor's students of Environmental Engineering, depending on availability, and can be assessed with credit points as part of the subject-specific electives.
The excursions are voluntary and should preferably be attended from the 4th semester onwards.
  •  Page  1  of  1