Search result: Catalogue data in Autumn Semester 2024

Environmental Engineering Bachelor Information
Bachelor Studies (Programme Regulations 2022)
Second and Third Year Compulsory Courses
Examination Block 1
NumberTitleTypeECTSHoursLecturers
102-0293-00LHydrology Information O3 credits2GP. Burlando
AbstractThe course introduces the students to engineering hydrology. It covers first physical hydrology, that is the description and the measurement of hydrological processes (precipitation, interception, evapotranspiration, runoff, erosion, and snow), and it introduces then the basic mathematical models of the single processes and of the rainfall-runoff transformation, thereby including flood analysis.
Learning objectiveKnow the main features of engineering hydrology. Apply methods to estimate hydrological variables for dimensioning hydraulic structures and managing water ressources.
ContentThe hydrological cycle: global water resources, water balance, space and time scales of hydrological processes.

Precipitation: mechanisms of precipitation formation, precipitation measurements, variability of precipitation in space and time, precipitation regimes, point/basin precipitation, isohyetal method, Thiessen polygons, storm rainfall, design hyetograph.

Interception: measurement and estimation.

Evaporation and evapotranspiration: processes, measurement and estimation, potential and actual evapotranspiration, energy balance method, empirical methods.

Infiltration: measurement, Horton’s equation, empirical and conceptual models, phi-index and percentage method, SCS-CN method.

Surface runoff and subsurface flow: Hortonian and Dunnian surface runoff, streamflow measurement, streamflow regimes, annual hydrograph, flood hydrograph analysis – baseflow separation, flow duration curve.

Basin characteristics: morphology, topographic and phreatic divide, hypsometric curve, slope, drainage density.

Rainfall-runoff models (R-R): rationale, linear model of rainfall-runoff transformation, concept of the instantaneous unit hydrograph (IUH), linear reservoir, Nash model.

Flood estimation methods: flood frequency analysis, deterministic methods, probabilistic methods (e.g. statistical regionalisation, indirect R-R methods for flood estimation, rational method).

Erosion and sediment transport: watershed scale erosion, soil erosion by water, estimation of surface erosion, sediment transport.

Snow (and ice) hydrology: snow characteristic variables and measurements, estimation of snowmelt processes by the energy budget equation and conceptual melt models (temperature index method and degree-day method), snowmelt runoff.
Lecture notesThe lecture notes as well as the lecture presentations and handouts may be downloaded from the website of the Chair of Hydrology and Water Resources Management.
LiteratureChow, V.T., Maidment, D.R. and Mays, L.W. (1988). Applied Hydrology, New York, McGraw-Hill.
Dingman, S.L. (2002). Physical Hydrology, 2nd ed., Upper Saddle River, N.J., Prentice Hall.
Dyck, S. und Peschke, G. (1995). Grundlagen der Hydrologie, 3. Aufl., Berlin, Verlag für Bauwesen.
Maidment, D.R. (1993). Handbook of Hydrology, New York, McGraw-Hill.
Maniak, U. (1997). Hydrologie und Wasserwirtschaft, eine Einführung für Ingenieure, Springer, Berlin.
Manning, J.C. (1997). Applied Principles of Hydrology, 3rd ed., Upper Saddle River, N.J., Prentice Hall.
Prerequisites / NoticeKnowledge of statistics is a prerequisite. The required theoretical background, which is needed for understanding part of the lectures and performing part of the assignments, may be summarised as follows:
Elementary data processing: hydrological measurements and data, data visualisation (graphical representation and numerical parameters).
Frequency analysis: hydrological data as random variables, return period, frequency factor, probability paper, probability distribution fitting, parametric and non-parametric tests, parameter estimation.
101-0203-01LHydraulics IO5 credits3V + 1UR. Stocker
AbstractThe course teaches the basics of hydromechanics, relevant for civil and environemental engineers.
Learning objectiveIn the course "Hydraulics I", the competency of process understanding is taught, applied and examined. Furthermore system understanding and measurement methods are taught.
ContentProperties of water, hydrostatics, stability of floating bodies, continuity, Euler equation of motion, Navier-Stokes equations, similarity, Bernoulli principle, momentum equation for finite volumes, potential flows, ideal fluids vs. real fluids, boundary layer, pipe flow, open channel flow, flow measurements, demonstration experiments in the lecture hall
Lecture notesScript and collection of previous problems
LiteratureBollrich, Technische Hydromechanik 1, Verlag Bauwesen, Berlin
102-0635-11LAir Quality TechnicsO3 credits2GJ. Wang
AbstractThe lecture provides different strategies and techniques for emission reduction and pollutant removal from exhaust air flows. The fundamental theories, practical designs and application scenarios of each technique are covered. The basic knowledge is deepened by the discussion of specific air pollution problems of today's society.
Learning objectiveThe students gain general knowledge of air pollution and study the methods used for air pollution control. The students know the different strategies of air pollution control and are familiar with their scientific fundamentals. The students can evaluate possible control methods and equipment, design control systems and estimate their efficiencies and costs. They are able to incorporate goals concerning air quality into their engineering work.
ContentThe reduction of the formation of pollutants is done by modifying the processes (process-integrated measures) and by different engineering operations for the cleaning of waste gas (downstream pollution control). It will be demonstrated, that the variety of these procedures can be traced back to the application of a few basic physical and chemical principles.

Procedures for the removal of particles (inertial separator, filtration, electrostatic precipitators, scrubbers) with their different mechanisms (field forces, impaction and diffusion processes) and the modelling of these mechanisms will be covered.

Procedures for the removal of gaseous pollutants and the description of the driving forces involved, as well as the equilibrium and the kinetics of the relevant processes (absorption, adsorption as well as thermal, catalytic and biological conversions) will be covered.

Discussion of the technical possibilities to solve the actual air pollution problems will be conducted.
Lecture notesJing Wang, Air pollution control technics
Lecture slides and exercises
LiteratureList of literature included in script
Reference book
Air Pollution Control Technology Handbook, Karl B. Schnelle, Jr. and Charles A. Brown, CRC Press LLC, 2001.
Prerequisites / NoticeCollege lectures on basic physics, chemistry and mathematics.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Media and Digital Technologiesfostered
Problem-solvingassessed
Project Managementfostered
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Customer Orientationfostered
Leadership and Responsibilityfostered
Self-presentation and Social Influence fostered
Sensitivity to Diversityfostered
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityassessed
Creative Thinkingfostered
Critical Thinkingassessed
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
Examination Block 2
NumberTitleTypeECTSHoursLecturers
752-4001-00LMicrobiology
Some parts of the lecture will be taught in English.
O2 credits2VM. Schuppler, M. Pilhofer, S. Robinson, G. Velicer
AbstractTeaching of basic knowledge in microbiology with main focus on Microbial Cell Structure and Function, Molecular Genetics, Microbial Growth, Metabolic Diversity, Phylogeny and Taxonomy, Prokaryotic Diversity, Human-Microbe Interactions, Biotechnology.
Learning objectiveTeaching of basic knowledge in microbiology.
ContentDer Schwerpunkt liegt auf den Themen: Bakterielle Zellbiologie, Molekulare Genetik, Wachstumsphysiologie, Biochemische Diversität, Phylogenie und Taxonomie, Prokaryotische Vielfalt, Interaktion zwischen Menschen und Mikroorganismen sowie Biotechnologie.
Lecture notesWird von den jeweiligen Dozenten ausgegeben.
LiteratureDie Behandlung der Themen erfolgt auf der Basis des Lehrbuchs Brock, Biology of Microorganisms
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
402-0023-01LPhysicsO7 credits5V + 2UJ. Faist
AbstractThis course gives an overview of important concepts in classical dynamics, thermodynamics, electromagnetism, quantum physics, atomic physics, and special relativity. Emphasis is placed on demonstrating key phenomena using experiments, and in developing skills for quantitative problem solving.
Learning objectiveThe goal of this course is to make students able to explain and apply the basic principles and methodology of physics to problems of interest in modern science and engineering. An important component of this is learning how to solve new, complex problems by breaking them down into parts and applying simplifications. A secondary goal is to provide to students an overview of important subjects in both classical and modern physics.
ContentElectrodynamics, Thermodynamics, Quantum physics, Waves and Oscillations, special relativity
Lecture notesLecture notes and exercise sheets will be distributed via Moodle
LiteratureP.A. Tipler and G. Mosca, Physics for scientists and engineers, W.H. Freeman and Company, New York
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingfostered
Media and Digital Technologiesfostered
Problem-solvingassessed
Project Managementfostered
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Customer Orientationfostered
Leadership and Responsibilityfostered
Self-presentation and Social Influence fostered
Sensitivity to Diversityfostered
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingfostered
Critical Thinkingfostered
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management assessed
103-0233-10LFundamentals of GISO6 credits5GM. Raubal
AbstractFundamentals of geographic information systems: spatial data modeling; metrics & topology; vector, raster and network data; thematic data; spatial statistics; system architectures; data quality; spatial queries and analysis; geovisualisation; spatial databases; labs with GIS software
Learning objectiveKnowing theoretical aspects of geographic information regarding data acquisition, representation, analysis and visualisation.
Knowing the fundamentals of geoinformation technologies for the realization, application and operation of geographic information systems in engineering projects.
Content- Einführung GIS & GIScience
- Konzeptionelles Modell & Datenschema
- Vektorgeometrie & Topologie
- Rastergeometrie und -algebra
- Netzwerke
- Thematische Daten
- Räumliche Statistik
- Systemarchitekturen & Interoperabilität
- Datenqualität, Unsicherheiten & Metadaten
- Räumliche Abfragen und Analysen
- Präsentation raumbezogener Daten
- Geodatenbanken
Lecture notesVorlesungspräsentationen werden digital zur Verfügung gestellt.
LiteratureBill, R. (2023). Grundlagen der Geo-Informationssysteme (7. Auflage): Wichmann.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Media and Digital Technologiesassessed
Problem-solvingassessed
Social CompetenciesSelf-presentation and Social Influence fostered
Personal CompetenciesCreative Thinkingfostered
Critical Thinkingfostered
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
Examination Block 3
NumberTitleTypeECTSHoursLecturers
102-0675-00LEarth ObservationO4 credits3GI. Hajnsek
AbstractThe aim of the course is to provide the fundamental knowledge about earth observation sensors, techniques and methods for bio/geophysical environmental parameter estimation.
Learning objectiveThe aim of the course is to provide the fundamental knowledge about earth observation sensors, techniques and methods for bio/geophysical environmental parameter estimation. Students should know at the end of the course:
1. Basics of measurement principle
2. Fundamentals of image acquisition
3. Basics of the sensor-specific geometries
4. Sensor-specific determination of environmental parameters
ContentDie Lehrveranstaltung gibt einen Einblick in die heutige Erdbeoachtung mit dem follgenden skizzierten Inhalt:
1. Einführung in die Fernerkundung von Luft- und Weltraum gestützen Systemen
2. Einführung in das Elektromagnetische Spektrum
3. Einführung in optische Systeme (optisch und hyperspektral)
4. Einführung in Mikrowellen-Technik (aktiv und passiv)
5. Einführung in atmosphärische Systeme (meteo und chemisch)
6. Einführung in die Techniken und Methoden zur Bestimmung von Umweltparametern
7. Einführung in die Anwendungen zur Bestimmung von Umweltparametern in der Hydrologie, Glaziologie, Forst und Landwirtschaft, Geologie und Topographie
Lecture notesFolien zu jeden Vorlesungsblock werden zur Verfügung gestellt.
LiteratureAusgewählte Literatur wird am Anfang der Vorlesung vorgestellt.
Examination Block 3
NumberTitleTypeECTSHoursLecturers
101-0031-10LSystems EngineeringO3 credits2GB. T. Adey
Abstract• Systems Engineering is a way of thinking that helps engineer sustainable systems, i.e., ones that meet the needs of stakeholders in the short, medium and long term.
• This course provides an overview of the main principles of Systems Engineering, and includes an introduction to the use of operations research methods in the determination of optimal systems.
Learning objectiveThe world’s growing population, changing demographics, and changing climate pose formidable challenges to humanity’s ability to live sustainably. Ensuring that humanity can live sustainably requires accommodating Earth’s growing and changing population through the provision and operation of a sustainable and resilient built environment. This requires ensuring excellent decision-making as to how the built environment is constructed and modified.

The objective of this course is to ensure the best possible decision making when engineering sustainable systems, i.e., ones that meet the needs of stakeholders in the short, medium and long term. In this course, you will learn the main principles of Systems Engineering that can help you from the first idea that a system may not meet expectations, to the quantitative and qualitative evaluation of possible system modifications. Additionally, the course includes an introduction to the use of operations research methods in the determination of optimal solutions in complex systems.

More specifically upon completion of the course, you will have gained insight into:
• how to structure the large amount of information that is often associated with attempting to modify complex systems
• how to set goals and define constraints in the engineering of complex systems
• how to generate possible solutions to complex problems in ways that limit exceedingly narrow thinking
• how to compare multiple possible solutions over time with differences in the temporal distribution of costs and benefits and uncertainty as to what might happen in the future
• how to assess values of benefits to stakeholders that are not in monetary units
• how to assess whether it is worth obtaining more information in determining optimal solution
• how to take a step back from the numbers and qualitatively evaluate the possible solutions in light of the bigger picture
• the basics of operations research and how it can be used to determine optimal solutions to complex problems, including linear, integer and network programming, dealing with multiple objectives and conducting sensitivity analyses.
ContentThe lectures are structured as follows:

1. Introduction – An introduction to System Engineering, a way of thinking that helps to engineer sustainable systems, i.e. ones that meet the needs of stakeholders in the short, medium and long terms. A high-level overview of the main principles of System Engineering. The expectations of your efforts throughout the semester.
2. Situation analysis – How to structure the large amount of information that is often associated with attempting to modify complex systems.
3. Goals and constraints – How to set goals and constraints to identify the best solutions as clearly as possible.
4. Generation of possible solutions – How to generate possible solutions to problems, considering multiple stakeholders.
5. The principles of net-benefit maximization and a series of methods that range from qualitative and approximate to quantitative and exact, including pairwise comparison, elimination, weighting, and expected value.
6. The idea behind the supply and demand curves and revealed preference methods.
7. The concept of equivalence, including the time value of money, interest, life times and terminal values.
8. The relationship between net-benefit and the benefit-cost ratio. How incremental cost benefit analysis can be used to determine the maximum net benefit. Internal rates of return.
9. How to consider multiple possible futures and use simple rules to help pick optimal solutions and to determine the value of more information.
10. Once quantitative analysis is used it becomes possible to use operations research methods to analyse large numbers of possible solutions. Linear programming and the simplex method.
11. How sensitivity analysis is conducted using linear programming.
12. How to use operations research to solve problems that consist of discrete values, as well as how to exploit the structure of networks to find optimal solutions to network problems.
13. How to set up and solve problems when there are multiple objectives.

The course uses a combination of qualitative and quantitative approaches.
Lecture notes• The lecture materials consist of a script, the slides, example calculations in Excel, Moodle quizzes, and excercises.
• The lecture materials will be distributed via Moodle before each lecture.
LiteratureAppropriate literature in addition to the lecture materials will be handed out when required via Moodle.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Media and Digital Technologiesfostered
Problem-solvingassessed
Project Managementfostered
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Customer Orientationfostered
Leadership and Responsibilityfostered
Self-presentation and Social Influence fostered
Sensitivity to Diversityfostered
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingfostered
Critical Thinkingassessed
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
851-0723-10LEnvironmental Law Restricted registration - show details O4 credits3VM. Pflüger, A. Gossweiler, C. Jäger
AbstractThis class introduces students to the fundamentals of legal systems, focusing on environmental law. It covers the fundamentals of constitutional and administrative law, as opposed to private and criminal law. The class will focus on concepts, terminology and procedures of Swiss environmental law, supplemented through case studies.
Learning objectiveStudents learn fundamental structures of the legal system, understand core concepts and selected problems of public law, focusing on Swiss and European environmental law. These insights can be applied in further law courses, in particular in the course "Environmental law: Areas and Case Studies."
ContentDie Vorlesung vermittelt eine kurze allgemeine Einführung in das Recht, insbesondere in die Grundlagen des öffentlichen Rechts, und ordnet das Umweltrecht in die schweizerischen Rechtsordnung ein. Die Studierenden lernen die grundlegenden Schritte der Rechtsanwendung bzw. eines Verwaltungsverfahrens und deren Einbettung in den umweltrechtlichen Kontext kennen. Die Vorlesung behandelt sodann die Ziele, Prinzipien und Grundsätze des Umweltrechts und beleuchtet die umweltrechtlichen Instrumente und Handlungsformen. Die Studierenden erhalten Einblicke in verschiedene umweltrechtliche Spezialthemen. Ein Überblick über das dem Umweltrecht nahestehende und mit ihm verzahnte Bau- und Planungsrecht rundet die Vorlesung thematisch ab. Der Vorlesungsstoff wird anhand von Fallbeispielen vermittelt, deren Diskussion Gelegenheit zur aktiven Mitarbeit der Studierenden bietet. Vereinzelte Gastvorträge bieten wertvolle Praxiseinblicke.
Lecture notesChristoph Jäger/Andreas Bühler, Schweizerisches Umweltrecht, Bern 2016
LiteratureWeitere Literaturangaben folgen in der Vorlesung
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesfostered
Techniques and Technologiesfostered
Laboratory Course in Environmental Engineering
NumberTitleTypeECTSHoursLecturers
102-0527-10LEnvironmental Laboratory I Restricted registration - show details O4 credits4PD. Braun, L. Biolley, M. Vogt, L. von Känel
AbstractA practical introduction to important measurement methods for environmental engineers. Results of the measurements are compared to models and deviations are quantified with statistical methods.
Learning objectiveThe laboratory offers students an insight into various experimental methods relevant to environmental engineering. The students deal with problems of measurement technology and measurement uncertainty, learn to characterize systems and to compare and discuss the results of the measurements with simple models. The work is documented with scientific reports or presented in presentations.
ContentEs werden Experimente zu den folgenden Themen durchgeführt:
- Verweilzeit in einer Rührkesselkaskade
- Hydrodynamische Versuche
- Photometrische Bestimmungen von Inhaltsstoffen
- Carbonatgleichgewicht
- Gasgleichgewichte

Die folgenden analytischen Methoden werden dabei eingesetzt:
- UV/VIS-Spektroskopie
- Leitfähigkeitsmessungen
- pH
- Druckmessungen
Lecture notesWird abgegeben
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingfostered
Media and Digital Technologiesassessed
Problem-solvingassessed
Project Managementfostered
Social CompetenciesCommunicationassessed
Cooperation and Teamworkfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingfostered
Critical Thinkingfostered
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
Additional Compulsory Courses
NumberTitleTypeECTSHoursLecturers
102-0515-01LEnvironmental Engineering Seminars Information Restricted registration - show details O3 credits3SS. Sinclair, P. Burlando, I. Hajnsek, S. Hellweg, M. Maurer, P. Molnar, E. Morgenroth, C. Oberschelp, S. Pfister, E. Secchi, R. Stocker, J. Wang
AbstractThe course is organized in the form of seminars held by the students. Topics selected from the core disciplines of the curriculum (water resources, urban water engineering, material fluxes, waste technology, air polution, earth observation) are discussed in the class on the basis of scientific papers that are illustrated and critically reviewed by the students.
Learning objectiveLearn about recent research results in environmental engineering and analyse practical applications in environmental engineering.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesfostered
Method-specific CompetenciesMedia and Digital Technologiesfostered
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Customer Orientationfostered
Self-presentation and Social Influence fostered
Personal CompetenciesCreative Thinkingfostered
Critical Thinkingfostered
Self-awareness and Self-reflection fostered
  •  Page  1  of  1