Search result: Catalogue data in Autumn Semester 2024
Environmental Engineering Bachelor | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Bachelor Studies (Programme Regulations 2022) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
First Year Compulsory Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
First Year Examinations | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
First Year Examination Block A | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
401-0141-00L | Linear Algebra | O | 5 credits | 4V + 1U | M. Akka Ginosar, R. Prohaska | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to Linear Algebra | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Basic knowledge of linear algebra as a tool for solving engineering problems. Understanding of abstract mathematical formulation of technical and scientific problems. Together with Analysis we develop the basic mathematical knowledge for an engineer. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Introduction and linear systems of equations, matrices, quadratic matrices, determinants and traces, general vector spaces, linear mappings, bases, diagonalization, eigenvalues and eigenvectors, orthogonal transformations, scalar-product, inner product spaces, Gram-Schmidt process. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | The lecturer will provide course notes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | K. Nipp, D. Stoffer, Lineare Algebra, VdF Hochschulverlag ETH G. Strang, Lineare Algebra, Springer Larson, Ron. Elementary linear algebra. Nelson Education, 2016. (Englisch) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
252-0845-00L | Computer Science I | O | 5 credits | 2V + 2U | M. Lüthi, A. Streich | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course covers the basic concepts of computer programming. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Basic understanding of programming concepts. Students will be able to write and read simple programs and to modify existing programs. In the course "Computer Science I", the competency of programming is taught, applied and examined. Furthermore modeling is taught and applied. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | variables, types, control structures, functions, scoping, recursion, object-oriented programming. The programming language is Python. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | The slides and lecture notes will be made available for download on the course website. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Learn to Code by Solving Problems A Python Programming Primer Daniel Zingaro Python Crash Course A Hands-On, Project-Based Introduction to Programming Eric Matthes Python for Data Analysis Data wrangling with pandas, NumPy & Jupyter, 3rd Edition Wes McKinney | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-0243-01L | Biology III: Essentials of Ecology | O | 3 credits | 2V | J. Alexander | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This introductory lecture in ecology covers basic ecological concepts and the most important levels of complexity in ecological research. Ecological concepts are exemplified by using aquatic and terrestrial systems; corresponding methodological approaches are demonstrated. Threats to biodiversity and the appropriate management are discussed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The objective of this lecture is to teach basic ecological concepts and the different levels of complexity in ecological research. The students should learn ecological concepts at these different levels in the context of concrete examples from terrestrial and aquatic ecology. Corresponding methods for studying the systems will be presented. A further aim of the lecture is that students achieve an understanding of biodiversity, why it is threatened and how it can be managed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | - Biodiversity: variation, threats and conservation - Influence of environmental factors on organisms; adaptation to environmental conditions - Population dynamics: causes, description, prediction and regulation - Interactions between species (competition, coexistence, predation, parasitism, food webs) - Ecological communities: structure, stability, succession - Ecosystems: compartments, material and energy flows | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Documents, lecture slides, exercises and relevant literature are available in Moodle. The documents for the next lecture will be available on Friday morning at the latest. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Required reading: Begon, M.E., Howarth, R.W., Townsend, C.R. (2017): Ökologie. 3. Aufl. Springer Verlag, Berlin. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0223-10L | Engineering Mechanics | O | 4 credits | 2V + 2U + 1K | P. Tiso | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to engineering mechanics: kinematics, statics and dynamics of rigid bodies and systems of rigid bodies. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | By learning the basics of kinematics, statics and dynamics, students should gain a basic understanding of the subject matter with which simple problems in engineering mechanics can be analyzed and solved. Based on this, further lectures, which require knowledge of mechanics, can be attended. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Basic notions: position and velocity of particles, rigid bodies, planar motion, kinematics of rigid bodies, force, torque, power. Statics: static equivalence, center of forces, centroid, principle of virtual power, equilibrium, constraints, analytical statics, friction. Dynamics: acceleration, inertial forces, d'Alembert's Principle, Newton's Second Law, principles of linear and angular momentum, equations of planar motion of rigid bodies. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | yes, in German | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | M. B. Sayir, J. Dual, S. Kaufmann, E. Mazza: Ingenieurmechanik 1, Grundlagen und Statik. Springer Vieweg, Wiesbaden, 2015. M. B. Sayir, S. Kaufmann: Ingenieurmechanik 3, Dynamik. Springer Vieweg, Wiesbaden, 2014. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
First Year Examination Block B | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
401-0241-00L | Analysis I | O | 7 credits | 4V + 2U | M. Akveld, G.‑I. Ionita | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Mathematical tools for the engineer | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Mathematics as a tool to solve engineering problems. Mathematical formulation of technical and scientific problems. Basic mathematical knowledge for engineers. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Complex numbers. Calculus for functions of one variable with applications. Simple Mathematical models in engineering. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Wird auf der Vorlesungshomepage zu Verfügung gestellt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Klaus Dürrschnabel, "Mathematik für Ingenieure - Eine Einführung mit Anwendungs- und Alltagsbeispielen", Springer; online verfügbar unter: http://link.springer.com/book/10.1007/978-3-8348-2559-9/page/1 Tilo Arens et al., "Mathematik", Springer; online verfügbar unter: http://link.springer.com/book/10.1007/978-3-642-44919-2/page/1 Meike Akveld und Rene Sperb, "Analysis 1", vdf; http://vdf.ch/index.php?route=product/product&product_id=1706 Urs Stammbach, "Analysis I/II" (erhältlich im ETH Store); https://people.math.ethz.ch/~stammb/analysisskript.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-2001-02L | Chemistry I | O | 4 credits | 2V + 2U | J. Cvengros, J. E. E. Buschmann, P. Funck, R. Verel | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | General Chemistry I: Chemical bond and molecular structure, chemical thermodynamics, chemical equilibrium. In the course "Chemistry I", the competencies of process understanding, system understanding, modeling, concept development and data analysis & interpretation are taught, applied and examined. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Introduction to general and inorganic chemistry. Basics of the composition and the change of the material world. Introduction to the thermodynamically controlled physico-chemical processes. Macroscopic phenomena and their explanation through atomic and molecular properties. Using the theories to solve qualitatively and quantitatively chemical and ecologically relevant problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | 1. Stoichiometry Amount of substance and mass. Composition of chemical compounds. Reaction equation. Ideal gas law. 2. Atoms Elementary particles and atoms. Electron configuration of the elements. Periodic system. 3. Chemical bonding and its representation. Spatial arrangement of atoms in molecules. Molecular orbitals. 4. Basics of chemical thermodynamics System and surroundings. Description of state and change of state of chemical systems. 5. First law of thermodynamics Internal energy. Heat and Work. Enthalpy and reaction enthalpy. 6. Second law of thermodynamics Entropy. Change of entropy in chemical systems and universe. Reaction entropy. 7. Gibbs energy and chemical potential. Combination of laws of thermodynamics. Gibbs energy and chemical reactions. Activities of gases, condensed substances and species in solution. Equilibrium constant. 8. Chemical equilibrium Law of mass action. Reaction quotient and equilibrium constant. Phase transition equilibrium. 9. Acids and bases Properties of acids and bases. Dissociation of acids and bases. pH and the calculation of pH-values in acid-base systems. Acid-base diagrams. Buffers. Polyprotic acids and bases. 10. Dissolution and precipitation. Heterogeneous equilibrium. Dissolution and solubility product. Carbon dioxide-carbonic acid-carbonate equilibrium. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Online-Skript mit durchgerechneten Beispielen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Charles E. Mortimer, CHEMIE - DAS BASISWISSEN DER CHEMIE. 12. Auflage, Georg Thieme Verlag Stuttgart, 2015. Weiterführende Literatur: Theodore L. Brown, H. Eugene LeMay, Bruce E. Bursten, CHEMIE. 10. Auflage, Pearson Studium, 2011. (deutsch) Catherine Housecroft, Edwin Constable, CHEMISTRY: AN INTRODUCTION TO ORGANIC, INORGANIC AND PHYSICAL CHEMISTRY, 3. Auflage, Prentice Hall, 2005.(englisch) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Additional First Year Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
102-0004-00L | Introduction into Environmental Engineering | O | 3 credits | 2G | P. Molnar, R. Boes, I. Hajnsek, S. Hellweg, J. P. Leitão Correia , M. Maurer, S. Pfister, J. Slomka, J. Wang | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | In this course students are introduced to how environmental problems in the areas of water quantity and quality, waste production and recycling, air pollution control, are formulated and solved with engineering methods. The course makes a connection between the theoretical Bachelor foundation classes and practical topics of environmental engineering in six main thematic areas. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | After completing this course, the student will be able to: - formulate key global environmental problems - develop a systems perspective and solutions to the problems (critical thinking) - identify and solve simple numerical problems in the domain areas - understand why/how we use data/models in environmental engineering - develop own interest in the domain areas and see career opportunities | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Topics of study: 0. Introduction – description of the Earth System, main stressors, global warming, introduction into the methods and goals of environmental engineering. 1. Water Science & Engineering – definition of the global water cycle and hydrological regimes, surface/subsurface flow equations (advection, diffusion), water resources management, climate change. 2. Resource Management & Recovery – waste management, recycling, resource recovery, lifecycle assessment, water and carbon footprints. 3. Urban Water Technology – water quality parameters, municipal water and wastewater treatment processes and technologies, urban water systems (infrastructure). 4. River and Hydraulic Engineering – utility hydraulic engineering (hydropower production), protective hydraulic engineering (flood protection), waters protection (river restoration, ecological measures at hydropower plants). 5. Air Quality – air quality parameters, main air pollutants, air quality in cities/indoor, emission control, the plume dispersion model. 6. Earth Observation – satellite observation of the Earth System from space, methods, environmental applications (glaciers, forest, land surface change) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Course will take place in English and German (bilingual). The English textbook by Masters and Ela (see below) will be complemented by instructors materials to the individual thematic topics. Lecture presentations will be the main study material. There is no formal Script. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | - Masters, G.M., & Ela, W.P. (2014). Introduction to Environmental Engineering and Science, Third Edition, Prentice Hall, 692 pp, https://ebookcentral.proquest.com/lib/ethz/reader.action?docID=5831826 - lecture presentations and selected papers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Second and Third Year Compulsory Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Examination Block 1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
102-0293-00L | Hydrology | O | 3 credits | 2G | P. Burlando | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course introduces the students to engineering hydrology. It covers first physical hydrology, that is the description and the measurement of hydrological processes (precipitation, interception, evapotranspiration, runoff, erosion, and snow), and it introduces then the basic mathematical models of the single processes and of the rainfall-runoff transformation, thereby including flood analysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Know the main features of engineering hydrology. Apply methods to estimate hydrological variables for dimensioning hydraulic structures and managing water ressources. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The hydrological cycle: global water resources, water balance, space and time scales of hydrological processes. Precipitation: mechanisms of precipitation formation, precipitation measurements, variability of precipitation in space and time, precipitation regimes, point/basin precipitation, isohyetal method, Thiessen polygons, storm rainfall, design hyetograph. Interception: measurement and estimation. Evaporation and evapotranspiration: processes, measurement and estimation, potential and actual evapotranspiration, energy balance method, empirical methods. Infiltration: measurement, Horton’s equation, empirical and conceptual models, phi-index and percentage method, SCS-CN method. Surface runoff and subsurface flow: Hortonian and Dunnian surface runoff, streamflow measurement, streamflow regimes, annual hydrograph, flood hydrograph analysis – baseflow separation, flow duration curve. Basin characteristics: morphology, topographic and phreatic divide, hypsometric curve, slope, drainage density. Rainfall-runoff models (R-R): rationale, linear model of rainfall-runoff transformation, concept of the instantaneous unit hydrograph (IUH), linear reservoir, Nash model. Flood estimation methods: flood frequency analysis, deterministic methods, probabilistic methods (e.g. statistical regionalisation, indirect R-R methods for flood estimation, rational method). Erosion and sediment transport: watershed scale erosion, soil erosion by water, estimation of surface erosion, sediment transport. Snow (and ice) hydrology: snow characteristic variables and measurements, estimation of snowmelt processes by the energy budget equation and conceptual melt models (temperature index method and degree-day method), snowmelt runoff. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | The lecture notes as well as the lecture presentations and handouts may be downloaded from the website of the Chair of Hydrology and Water Resources Management. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Chow, V.T., Maidment, D.R. and Mays, L.W. (1988). Applied Hydrology, New York, McGraw-Hill. Dingman, S.L. (2002). Physical Hydrology, 2nd ed., Upper Saddle River, N.J., Prentice Hall. Dyck, S. und Peschke, G. (1995). Grundlagen der Hydrologie, 3. Aufl., Berlin, Verlag für Bauwesen. Maidment, D.R. (1993). Handbook of Hydrology, New York, McGraw-Hill. Maniak, U. (1997). Hydrologie und Wasserwirtschaft, eine Einführung für Ingenieure, Springer, Berlin. Manning, J.C. (1997). Applied Principles of Hydrology, 3rd ed., Upper Saddle River, N.J., Prentice Hall. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Knowledge of statistics is a prerequisite. The required theoretical background, which is needed for understanding part of the lectures and performing part of the assignments, may be summarised as follows: Elementary data processing: hydrological measurements and data, data visualisation (graphical representation and numerical parameters). Frequency analysis: hydrological data as random variables, return period, frequency factor, probability paper, probability distribution fitting, parametric and non-parametric tests, parameter estimation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0203-01L | Hydraulics I | O | 5 credits | 3V + 1U | R. Stocker | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course teaches the basics of hydromechanics, relevant for civil and environemental engineers. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | In the course "Hydraulics I", the competency of process understanding is taught, applied and examined. Furthermore system understanding and measurement methods are taught. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Properties of water, hydrostatics, stability of floating bodies, continuity, Euler equation of motion, Navier-Stokes equations, similarity, Bernoulli principle, momentum equation for finite volumes, potential flows, ideal fluids vs. real fluids, boundary layer, pipe flow, open channel flow, flow measurements, demonstration experiments in the lecture hall | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Script and collection of previous problems | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Bollrich, Technische Hydromechanik 1, Verlag Bauwesen, Berlin | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
102-0635-11L | Air Quality Technics | O | 3 credits | 2G | J. Wang | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The lecture provides different strategies and techniques for emission reduction and pollutant removal from exhaust air flows. The fundamental theories, practical designs and application scenarios of each technique are covered. The basic knowledge is deepened by the discussion of specific air pollution problems of today's society. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The students gain general knowledge of air pollution and study the methods used for air pollution control. The students know the different strategies of air pollution control and are familiar with their scientific fundamentals. The students can evaluate possible control methods and equipment, design control systems and estimate their efficiencies and costs. They are able to incorporate goals concerning air quality into their engineering work. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The reduction of the formation of pollutants is done by modifying the processes (process-integrated measures) and by different engineering operations for the cleaning of waste gas (downstream pollution control). It will be demonstrated, that the variety of these procedures can be traced back to the application of a few basic physical and chemical principles. Procedures for the removal of particles (inertial separator, filtration, electrostatic precipitators, scrubbers) with their different mechanisms (field forces, impaction and diffusion processes) and the modelling of these mechanisms will be covered. Procedures for the removal of gaseous pollutants and the description of the driving forces involved, as well as the equilibrium and the kinetics of the relevant processes (absorption, adsorption as well as thermal, catalytic and biological conversions) will be covered. Discussion of the technical possibilities to solve the actual air pollution problems will be conducted. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Jing Wang, Air pollution control technics Lecture slides and exercises | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | List of literature included in script Reference book Air Pollution Control Technology Handbook, Karl B. Schnelle, Jr. and Charles A. Brown, CRC Press LLC, 2001. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | College lectures on basic physics, chemistry and mathematics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Examination Block 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
752-4001-00L | Microbiology Some parts of the lecture will be taught in English. | O | 2 credits | 2V | M. Schuppler, M. Pilhofer, S. Robinson, G. Velicer | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Teaching of basic knowledge in microbiology with main focus on Microbial Cell Structure and Function, Molecular Genetics, Microbial Growth, Metabolic Diversity, Phylogeny and Taxonomy, Prokaryotic Diversity, Human-Microbe Interactions, Biotechnology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Teaching of basic knowledge in microbiology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Der Schwerpunkt liegt auf den Themen: Bakterielle Zellbiologie, Molekulare Genetik, Wachstumsphysiologie, Biochemische Diversität, Phylogenie und Taxonomie, Prokaryotische Vielfalt, Interaktion zwischen Menschen und Mikroorganismen sowie Biotechnologie. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Wird von den jeweiligen Dozenten ausgegeben. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Die Behandlung der Themen erfolgt auf der Basis des Lehrbuchs Brock, Biology of Microorganisms | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0023-01L | Physics | O | 7 credits | 5V + 2U | J. Faist | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course gives an overview of important concepts in classical dynamics, thermodynamics, electromagnetism, quantum physics, atomic physics, and special relativity. Emphasis is placed on demonstrating key phenomena using experiments, and in developing skills for quantitative problem solving. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The goal of this course is to make students able to explain and apply the basic principles and methodology of physics to problems of interest in modern science and engineering. An important component of this is learning how to solve new, complex problems by breaking them down into parts and applying simplifications. A secondary goal is to provide to students an overview of important subjects in both classical and modern physics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Electrodynamics, Thermodynamics, Quantum physics, Waves and Oscillations, special relativity | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes and exercise sheets will be distributed via Moodle | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | P.A. Tipler and G. Mosca, Physics for scientists and engineers, W.H. Freeman and Company, New York | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
103-0233-10L | Fundamentals of GIS | O | 6 credits | 5G | M. Raubal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Fundamentals of geographic information systems: spatial data modeling; metrics & topology; vector, raster and network data; thematic data; spatial statistics; system architectures; data quality; spatial queries and analysis; geovisualisation; spatial databases; labs with GIS software | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Knowing theoretical aspects of geographic information regarding data acquisition, representation, analysis and visualisation. Knowing the fundamentals of geoinformation technologies for the realization, application and operation of geographic information systems in engineering projects. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | - Einführung GIS & GIScience - Konzeptionelles Modell & Datenschema - Vektorgeometrie & Topologie - Rastergeometrie und -algebra - Netzwerke - Thematische Daten - Räumliche Statistik - Systemarchitekturen & Interoperabilität - Datenqualität, Unsicherheiten & Metadaten - Räumliche Abfragen und Analysen - Präsentation raumbezogener Daten - Geodatenbanken | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Vorlesungspräsentationen werden digital zur Verfügung gestellt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Bill, R. (2023). Grundlagen der Geo-Informationssysteme (7. Auflage): Wichmann. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Examination Block 3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
102-0675-00L | Earth Observation | O | 4 credits | 3G | I. Hajnsek | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The aim of the course is to provide the fundamental knowledge about earth observation sensors, techniques and methods for bio/geophysical environmental parameter estimation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The aim of the course is to provide the fundamental knowledge about earth observation sensors, techniques and methods for bio/geophysical environmental parameter estimation. Students should know at the end of the course: 1. Basics of measurement principle 2. Fundamentals of image acquisition 3. Basics of the sensor-specific geometries 4. Sensor-specific determination of environmental parameters | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Die Lehrveranstaltung gibt einen Einblick in die heutige Erdbeoachtung mit dem follgenden skizzierten Inhalt: 1. Einführung in die Fernerkundung von Luft- und Weltraum gestützen Systemen 2. Einführung in das Elektromagnetische Spektrum 3. Einführung in optische Systeme (optisch und hyperspektral) 4. Einführung in Mikrowellen-Technik (aktiv und passiv) 5. Einführung in atmosphärische Systeme (meteo und chemisch) 6. Einführung in die Techniken und Methoden zur Bestimmung von Umweltparametern 7. Einführung in die Anwendungen zur Bestimmung von Umweltparametern in der Hydrologie, Glaziologie, Forst und Landwirtschaft, Geologie und Topographie | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Folien zu jeden Vorlesungsblock werden zur Verfügung gestellt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Ausgewählte Literatur wird am Anfang der Vorlesung vorgestellt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Examination Block 3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0031-10L | Systems Engineering | O | 3 credits | 2G | B. T. Adey | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | • Systems Engineering is a way of thinking that helps engineer sustainable systems, i.e., ones that meet the needs of stakeholders in the short, medium and long term. • This course provides an overview of the main principles of Systems Engineering, and includes an introduction to the use of operations research methods in the determination of optimal systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The world’s growing population, changing demographics, and changing climate pose formidable challenges to humanity’s ability to live sustainably. Ensuring that humanity can live sustainably requires accommodating Earth’s growing and changing population through the provision and operation of a sustainable and resilient built environment. This requires ensuring excellent decision-making as to how the built environment is constructed and modified. The objective of this course is to ensure the best possible decision making when engineering sustainable systems, i.e., ones that meet the needs of stakeholders in the short, medium and long term. In this course, you will learn the main principles of Systems Engineering that can help you from the first idea that a system may not meet expectations, to the quantitative and qualitative evaluation of possible system modifications. Additionally, the course includes an introduction to the use of operations research methods in the determination of optimal solutions in complex systems. More specifically upon completion of the course, you will have gained insight into: • how to structure the large amount of information that is often associated with attempting to modify complex systems • how to set goals and define constraints in the engineering of complex systems • how to generate possible solutions to complex problems in ways that limit exceedingly narrow thinking • how to compare multiple possible solutions over time with differences in the temporal distribution of costs and benefits and uncertainty as to what might happen in the future • how to assess values of benefits to stakeholders that are not in monetary units • how to assess whether it is worth obtaining more information in determining optimal solution • how to take a step back from the numbers and qualitatively evaluate the possible solutions in light of the bigger picture • the basics of operations research and how it can be used to determine optimal solutions to complex problems, including linear, integer and network programming, dealing with multiple objectives and conducting sensitivity analyses. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The lectures are structured as follows: 1. Introduction – An introduction to System Engineering, a way of thinking that helps to engineer sustainable systems, i.e. ones that meet the needs of stakeholders in the short, medium and long terms. A high-level overview of the main principles of System Engineering. The expectations of your efforts throughout the semester. 2. Situation analysis – How to structure the large amount of information that is often associated with attempting to modify complex systems. 3. Goals and constraints – How to set goals and constraints to identify the best solutions as clearly as possible. 4. Generation of possible solutions – How to generate possible solutions to problems, considering multiple stakeholders. 5. The principles of net-benefit maximization and a series of methods that range from qualitative and approximate to quantitative and exact, including pairwise comparison, elimination, weighting, and expected value. 6. The idea behind the supply and demand curves and revealed preference methods. 7. The concept of equivalence, including the time value of money, interest, life times and terminal values. 8. The relationship between net-benefit and the benefit-cost ratio. How incremental cost benefit analysis can be used to determine the maximum net benefit. Internal rates of return. 9. How to consider multiple possible futures and use simple rules to help pick optimal solutions and to determine the value of more information. 10. Once quantitative analysis is used it becomes possible to use operations research methods to analyse large numbers of possible solutions. Linear programming and the simplex method. 11. How sensitivity analysis is conducted using linear programming. 12. How to use operations research to solve problems that consist of discrete values, as well as how to exploit the structure of networks to find optimal solutions to network problems. 13. How to set up and solve problems when there are multiple objectives. The course uses a combination of qualitative and quantitative approaches. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | • The lecture materials consist of a script, the slides, example calculations in Excel, Moodle quizzes, and excercises. • The lecture materials will be distributed via Moodle before each lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Appropriate literature in addition to the lecture materials will be handed out when required via Moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
851-0723-10L | Environmental Law | O | 4 credits | 3V | M. Pflüger, A. Gossweiler, C. Jäger | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This class introduces students to the fundamentals of legal systems, focusing on environmental law. It covers the fundamentals of constitutional and administrative law, as opposed to private and criminal law. The class will focus on concepts, terminology and procedures of Swiss environmental law, supplemented through case studies. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Students learn fundamental structures of the legal system, understand core concepts and selected problems of public law, focusing on Swiss and European environmental law. These insights can be applied in further law courses, in particular in the course "Environmental law: Areas and Case Studies." | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Die Vorlesung vermittelt eine kurze allgemeine Einführung in das Recht, insbesondere in die Grundlagen des öffentlichen Rechts, und ordnet das Umweltrecht in die schweizerischen Rechtsordnung ein. Die Studierenden lernen die grundlegenden Schritte der Rechtsanwendung bzw. eines Verwaltungsverfahrens und deren Einbettung in den umweltrechtlichen Kontext kennen. Die Vorlesung behandelt sodann die Ziele, Prinzipien und Grundsätze des Umweltrechts und beleuchtet die umweltrechtlichen Instrumente und Handlungsformen. Die Studierenden erhalten Einblicke in verschiedene umweltrechtliche Spezialthemen. Ein Überblick über das dem Umweltrecht nahestehende und mit ihm verzahnte Bau- und Planungsrecht rundet die Vorlesung thematisch ab. Der Vorlesungsstoff wird anhand von Fallbeispielen vermittelt, deren Diskussion Gelegenheit zur aktiven Mitarbeit der Studierenden bietet. Vereinzelte Gastvorträge bieten wertvolle Praxiseinblicke. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Christoph Jäger/Andreas Bühler, Schweizerisches Umweltrecht, Bern 2016 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Weitere Literaturangaben folgen in der Vorlesung | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Laboratory Course in Environmental Engineering | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
102-0527-10L | Environmental Laboratory I | O | 4 credits | 4P | D. Braun, L. Biolley, M. Vogt, L. von Känel | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | A practical introduction to important measurement methods for environmental engineers. Results of the measurements are compared to models and deviations are quantified with statistical methods. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The laboratory offers students an insight into various experimental methods relevant to environmental engineering. The students deal with problems of measurement technology and measurement uncertainty, learn to characterize systems and to compare and discuss the results of the measurements with simple models. The work is documented with scientific reports or presented in presentations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Es werden Experimente zu den folgenden Themen durchgeführt: - Verweilzeit in einer Rührkesselkaskade - Hydrodynamische Versuche - Photometrische Bestimmungen von Inhaltsstoffen - Carbonatgleichgewicht - Gasgleichgewichte Die folgenden analytischen Methoden werden dabei eingesetzt: - UV/VIS-Spektroskopie - Leitfähigkeitsmessungen - pH - Druckmessungen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Wird abgegeben | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Additional Compulsory Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
102-0515-01L | Environmental Engineering Seminars | O | 3 credits | 3S | S. Sinclair, P. Burlando, I. Hajnsek, S. Hellweg, M. Maurer, P. Molnar, E. Morgenroth, C. Oberschelp, S. Pfister, E. Secchi, R. Stocker, J. Wang | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course is organized in the form of seminars held by the students. Topics selected from the core disciplines of the curriculum (water resources, urban water engineering, material fluxes, waste technology, air polution, earth observation) are discussed in the class on the basis of scientific papers that are illustrated and critically reviewed by the students. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Learn about recent research results in environmental engineering and analyse practical applications in environmental engineering. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Subject-Specific Electives | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
River and Hydraulic Engineering | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-1249-00L | Hydraulics of Engineering Structures | W | 3 credits | 2G | I. Albayrak, F. Evers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Hydraulic fundamentals are applied to hydraulic structures for wastewater, flood protection and hydropower. Typical case studies from engineering practice are further described. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Understanding and quantification of fundamental hydraulic processes with particular focus on hydraulic structures for wastewater, flood protection and hydropower. In the course "Hydraulics of Engineering Structures", the competencies of process understanding, system understanding and measurement methods are taught, applied and examined. The competencies modeling, concept development and data analysis & interpretation are taught and data analysis & interpretation is applied in addition. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | 1. Introduction & Basic equations 2. Losses in flow & Maximum discharge 3. Uniform flow & Critical flow 4. Hydraulic jump & Stilling basin 5. Backwater curves 6. Weirs & End overfall 7. Sideweir & Side channel 8. Bottom opening, Venturi & Culverts, Restrictors, Inverted siphons 9. Fall manholes & Vortex drop 10. Supercritical flow & Special manholes 11. Aerated flows & Low level outlets 12. Hydraulics of sediment bypass tunnels 13. Vegetated flows - Introduction & Application 14. Summary | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Text books Hager, W.H. (2010). Wastewater hydraulics. Springer: New York. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Exhaustive references are contained in the suggested text book. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0113-10L | Theory of Structures (for Environmental Engineering) | W | 3 credits | 2.5G | B. Sudret | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to structural mechanics, statically determinate beams and frame structures, trusses. Stresses in statically determinate structures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | - Understanding the response of elastic beam and frame structures - Ability to correctly apply the equilibrium conditions - Understanding the basics of continuum mechanics - Computation of stresses in elastic structures In the course "Theory of Structures (for Environmental Engineering)", the competencies of process understanding, system understanding and modeling are taught and applied. The competence process understanding and system understanding are examined, too. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | - Equilibrium, reactions, static determinacy - Internal forces (normal and shear forces, moments) - Arches and cables - Elastic trusses - Influence lines - Basics of continuum mechanics - Stresses in elastic beams | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Bruno Sudret, "Einführung in die Baustatik", 2021 Available on Moodle with exercises. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | B. Sudret, Baustatik - eine Einführung, 2022, Springer Vieweg. https://link.springer.com/book/10.1007/978-3-658-35255-4 |
- Page 1 of 2 All