Search result: Catalogue data in Autumn Semester 2024
Civil Engineering Bachelor | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Bachelor Studies (Programme Regulations 2022) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
First Year Compulsory Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
First Year Examinations | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
First Year Examination Block A Anstelle der deutschsprachigen Lehrveranstaltung 851-0703-03L Grundzüge des Rechts für Bauwissenschaften kann wahlweise auch die französischsprachige Lehrveranstaltung 851-0709-00L Droit civil belegt werden. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
401-0141-00L | Linear Algebra | O | 5 credits | 4V + 1U | M. Akka Ginosar, R. Prohaska | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to Linear Algebra | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Basic knowledge of linear algebra as a tool for solving engineering problems. Understanding of abstract mathematical formulation of technical and scientific problems. Together with Analysis we develop the basic mathematical knowledge for an engineer. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Introduction and linear systems of equations, matrices, quadratic matrices, determinants and traces, general vector spaces, linear mappings, bases, diagonalization, eigenvalues and eigenvectors, orthogonal transformations, scalar-product, inner product spaces, Gram-Schmidt process. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | The lecturer will provide course notes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | K. Nipp, D. Stoffer, Lineare Algebra, VdF Hochschulverlag ETH G. Strang, Lineare Algebra, Springer Larson, Ron. Elementary linear algebra. Nelson Education, 2016. (Englisch) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0501-03L | Mechanics I | O | 6 credits | 3V + 2U + 1K | R. Hopf, E. Mazza | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Basics: Position of a material point, velocity, kinematics of rigid bodies, forces, reaction principle, mechanical power Statics: Groups of forces, moments, equilibrium of rigid bodies, reactions at supports, parallel forces, center of gravity, statics of systems, principle of virtual power, trusses, frames, forces in beams and cables, friction. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The understanding of the fundamentals of statics for engineers and their application in simple settings. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Grundlagen: Lage eines materiellen Punktes; Geschwindigkeit; Kinematik starrer Körper, Translation, Rotation, Kreiselung, ebene Bewegung; Kräfte, Reaktionsprinzip, innere und äussere Kräfte, verteilte Flächen- und Raumkräfte; Leistung Statik: Aequivalenz und Reduktion von Kräftegruppen; Ruhe und Gleichgewicht, Hauptsatz der Statik; Lagerbindungen und Lagerkräfte, Lager bei Balkenträgern und Wellen, Vorgehen zur Ermittlung der Lagerkräfte; Parallele Kräfte und Schwerpunkt; Statik der Systeme, Behandlung mit Hauptsatz, mit Prinzip der virtuellen Leistungen, statisch unbestimmte Systeme; Statisch bestimmte Fachwerke, ideale Fachwerke, Pendelstützen, Knotengleichgewicht, räumliche Fachwerke; Reibung, Haftreibung, Gleitreibung, Gelenk und Lagerreibung, Rollreibung; Seilstatik; Beanspruchung in Stabträgern, Querkraft, Normalkraft, Biege- und Torsionsmoment | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Übungsblätter | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Sayir, M.B., Dual J., Kaufmann S., Mazza E., Ingenieurmechanik 1: Grundlagen und Statik, Springer | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-0032-00L | Geology and Petrography | O | 4 credits | 2V + 1U | K. Rauchenstein, M. O. Saar | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course gives an overview of the basic concepts of geology and petrography and shows some links to the application of these concepts. The course consists of weekly lectures and bi-weekly exercises in groups. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | This course gives an overview of the basic concepts of geology and petrography and shows some links to the application of these concepts. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Geologie der Erde, Mineralien - Baustoffe der Gesteine, Gesteine und ihr Kreislauf, Magmatische Gesteine, Vulkane und ihre Gesteine, Verwitterung und Erosion, Sedimentgesteine, Metamorphe Gesteine, Historische Geologie, Strukturgeologie und Gesteinsverformung, Bergstürze und Rutschungen, Grundwasser, Flüsse, Wind und Gletscher, Prozesse im Erdinnern, Erdbeben und Rohstoffe. Kurze Einführung in die Geologie der Schweiz. Übungen zum Gesteinsbestimmen und Lesen von geologischen, tektonischen und geotechnischen Karten, einfache Konstruktionen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Weekly handouts of PPT slides via MyStudies | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | The course is based on Press & Siever book Dynamic Earth by Grotzinger et al., available to ETH students via https://link.springer.com/book/10.1007/978-3-662-48342-8 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0700-00L | Programming for Engineers | O | 4 credits | 2V + 2U | B. Sudret, N. Lüthen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course is a hands-on introduction to programming with Matlab and Python, oriented at the needs of civil engineers. The course is held in a novel format comprising self-paced tutorials, a project consisting of implementing an engineering application including graphical user interface, and individual meetings with teaching assistants to demonstrate understanding and progress. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Students recognize the usefulness and power of computer tools in civil engineering, and are prepared to independently use Matlab or Python for solving relevant engineering problems. • Students are able to explain basic computer science concepts in simple terms. • Students are able to understand and explain the functionality of existing code. • Students are able to analyse a simple civil engineering problem in order to partition it into logical blocks and devise an algorithm to systematically solve the problem. • Students are able to implement simple imperative algorithms in Matlab and Python and explain the functionalities of their code. They are able to extend existing code with new functionalities. • Students are able to validate, test and debug their own code as well as existing code. • Students are able to explain the basics of object-oriented and interactive programming and are able to extend existing skeleton code to create simple graphical user interfaces. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course is structured into six modules. The first five are using Matlab, while the last introduces Python. 1. Getting to know Matlab: Matlab as a calculator; variables and arrays 2. Programming basics I: iterating and branching 3. Programming basics II: input and output, functions, visualization 4. Introduction to scientific programming: implementing simple algorithms from numerics, statistics and discrete math; validation, testing and debugging 5. From structures to objects to GUI: basics of object-oriented programming, introduction to interactive programming and graphical user interfaces (GUI) 6. Introduction to programming with Python | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | A script will be provided. The students will discover the topics of each module through E.Tutorials that they will follow at their own pace online. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Additional book (not mandatory): T. Siauw and A. M. Bayen. An introduction to MATLAB programming and numerical methods for engineers, Elsevier (2015). ISBN: 978-0-12-420228-3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
851-0703-03L | Private Construction Law | W | 2 credits | 2V | T. Ender, E. Rüegg | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This class introduces to practice-relevant basics of construction and real estate law. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | As future construction practitioners, students are able to recognise legal problems independently and in good time in their daily work and to initiate the right measures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Introduction (most important sources of construction and real estate law), SIA (Swiss Society of Engineers and Architects) Design Engineering Services Contract, SIA-Norm 118 (SIA General Terms and Conditions for Construction Services), liability of designers/civil engineers, construction insurance, property law for civil engineers, sale of land, contaminated sites, statutory mortgage for contractors, public procurement, litigation in construction and real estate, the civil engineer as expert, What else to know ... | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | There are 'Lecture Notes' (in German) for this course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
851-0709-00L | Introduction to Civil Law | W | 2 credits | 2V | H. Peter | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course Private Law focuses on the Swiss Code of Obligations (contracts, torts) and on Property Law (ownership, mortgage and easements). In addition, the course will provide a short overview of Civil Procedure and Enforcement. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Teaching of the principles of law, particularly private law. Introduction to law. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Le cours de droit civil porte notamment sur le droit des obligations (droit des contrats et responsabilité civile) et sur les droits réels (propriété, gages et servitudes). De plus, il est donné un bref aperçu du droit de la procédure et de l'exécution forcée. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Editions officielles récentes des lois fédérales, en langue française (Code civil et Code des obligations) ou italienne (Codice civile e Codice delle obbligazioni), disponibles auprès de la plupart des librairies. Sont indispensables: - le Code civil et le Code des obligations; Sont conseillés: - Nef, Urs Ch.: Le droit des obligations à l'usage des ingénieurs et des architectes, trad. Bovay, J., éd. Payot, Lausanne - Scyboz, G. et. Gilliéron, P.-R, éd.: Edition annotée du Code civil et du Code des obligations, Payot, Lausanne, et Helbing & Lichtenhahn, - Boillod, J.-P.: Manuel de droit, éd Slatkine, Genève - Biasio, G./Foglia, A.: Introduzione ai codici di diritto privato svizzero, ed. Giappichelli, Torino | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Remarques - Le cours de droit civil et le cours de droit public (2e sem.) sont l'équivalent des cours "Recht I" et "Recht II" en langue allemande et des exercices y relatifs. - Les examens peuvent se faire en français ou en italien. - Examen au 1er propédeutique; convient pour travail de semestre. - Con riassunti in italiano. E possibile sostenere l'esame in italiano. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
First Year Examination Block B | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
401-0241-00L | Analysis I | O | 7 credits | 4V + 2U | M. Akveld, G.‑I. Ionita | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Mathematical tools for the engineer | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Mathematics as a tool to solve engineering problems. Mathematical formulation of technical and scientific problems. Basic mathematical knowledge for engineers. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Complex numbers. Calculus for functions of one variable with applications. Simple Mathematical models in engineering. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Wird auf der Vorlesungshomepage zu Verfügung gestellt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Klaus Dürrschnabel, "Mathematik für Ingenieure - Eine Einführung mit Anwendungs- und Alltagsbeispielen", Springer; online verfügbar unter: http://link.springer.com/book/10.1007/978-3-8348-2559-9/page/1 Tilo Arens et al., "Mathematik", Springer; online verfügbar unter: http://link.springer.com/book/10.1007/978-3-642-44919-2/page/1 Meike Akveld und Rene Sperb, "Analysis 1", vdf; http://vdf.ch/index.php?route=product/product&product_id=1706 Urs Stammbach, "Analysis I/II" (erhältlich im ETH Store); https://people.math.ethz.ch/~stammb/analysisskript.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Second and Third Year Compulsory Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Courses of Examination Blocks | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Examination Block 1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
401-0243-00L | Analysis III | O | 3 credits | 2V + 1U | M. Akka Ginosar | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | We will model and solve scientific problems with partial differential equations. Differential equations which are important in applications will be classified and solved. Elliptic, parabolic and hyperbolic differential equations will be treated. The following mathematical tools will be introduced: Laplace and Fourier transforms, Fourier series, separation of variables, methods of characteristics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Learning to model scientific problems using partial differential equations and developing a good command of the mathematical methods that can be applied to them. Knowing the formulation of important problems in science and engineering with a view toward civil engineering (when possible). Understanding the properties of the different types of partial differential equations arising in science and in engineering. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Classification of partial differential equations Study of the Heat equation general diffusion/parabolic problems using the following tools through Separation of variables as an introduction to Fourier Series. Systematic treatment of the complex and real Fourier Series Study of the wave equation and general hyperbolic problems using Fourier Series, D'Alembert solution and the method of characteristics. Laplace transform and it's uses to differential equations Study of the Laplace equation and general elliptic problems using similar tools and generalizations of Fourier series. Application of Laplace transform for beam theory will be discussed. Time permitting, we will introduce the Fourier transform. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes will be provided | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | large part of the material follow certain chapters of the following first two books quite closely. S.J. Farlow: Partial Differential Equations for Scientists and Engineers, (Dover Books on Mathematics), 1993 E. Kreyszig: Advanced Engineering Mathematics, John Wiley & Sons, 10. Auflage, 2001 The course material is taken from the following sources: Stanley J. Farlow - Partial Differential Equations for Scientists and Engineers G. Felder: Partielle Differenzialgleichungen. https://people.math.ethz.ch/~felder/PDG/ Y. Pinchover and J. Rubinstein: An Introduction to Partial Differential Equations, Cambridge University Press, 2005 C.R. Wylie and L. Barrett: Advanced Engineering Mathematics, McGraw-Hill, 6th ed, 1995 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Analysis I and II, insbesondere, gewöhnliche Differentialgleichungen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0023-01L | Physics | O | 7 credits | 5V + 2U | J. Faist | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course gives an overview of important concepts in classical dynamics, thermodynamics, electromagnetism, quantum physics, atomic physics, and special relativity. Emphasis is placed on demonstrating key phenomena using experiments, and in developing skills for quantitative problem solving. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The goal of this course is to make students able to explain and apply the basic principles and methodology of physics to problems of interest in modern science and engineering. An important component of this is learning how to solve new, complex problems by breaking them down into parts and applying simplifications. A secondary goal is to provide to students an overview of important subjects in both classical and modern physics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Electrodynamics, Thermodynamics, Quantum physics, Waves and Oscillations, special relativity | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes and exercise sheets will be distributed via Moodle | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | P.A. Tipler and G. Mosca, Physics for scientists and engineers, W.H. Freeman and Company, New York | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0203-01L | Hydraulics I | O | 5 credits | 3V + 1U | R. Stocker | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course teaches the basics of hydromechanics, relevant for civil and environemental engineers. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | In the course "Hydraulics I", the competency of process understanding is taught, applied and examined. Furthermore system understanding and measurement methods are taught. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Properties of water, hydrostatics, stability of floating bodies, continuity, Euler equation of motion, Navier-Stokes equations, similarity, Bernoulli principle, momentum equation for finite volumes, potential flows, ideal fluids vs. real fluids, boundary layer, pipe flow, open channel flow, flow measurements, demonstration experiments in the lecture hall | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Script and collection of previous problems | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Bollrich, Technische Hydromechanik 1, Verlag Bauwesen, Berlin | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0113-00L | Theory of Structures I | O | 5 credits | 3V + 2U | B. Sudret | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to structural mechanics, statically determinate beams and frame structures, trusses, stresses and deformations, statically indeterminate beams and frame structures (force method) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | - Understanding the response of elastic beam and frame structures - Ability to correctly apply the equilibrium conditions - Understanding the basics of continuum mechanics - Computation of stresses and deformations of elastic structures - Ability to apply the force (flexibility) method for statically indeterminate structures | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | - Equilibrium, reactions, static determinacy - Internal forces (normal and shear forces, moments) - Arches and cables - Elastic trusses - Influence lines - Basics of continuum mechanics - Stresses in elastic beams - Deformations in Euler-Bernoulli and Timoshenko beams - Energy theorems - Statically indeterminate systems (Force method) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Bruno Sudret, "Einführung in die Baustatik" (2021) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | * Bruno Sudret, "Baustatik - Eine Einführung", Springer Vieweg https://link.springer.com/book/10.1007/978-3-658-35255-4 Peter Marti, "Theory of Structures", Wiley, 2013, 679 pp. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0503-00L | Mechanics III | O | 6 credits | 4V + 2U | D. Kochmann | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Dynamics of particles, rigid bodies, and deformable bodies: Motion of a single particle, motion of systems of particles, 2D and 3D motion of rigid bodies, vibrations, waves. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | This course enables students to apply the concepts and laws governing the kinematics and kinetics of particles, rigid bodies, and elastic bodies in order to identify, formulate, and solve dynamical engineering problems. Specifically, students will be able to describe, analyze, and predict the motion of particles and bodies in space over time and to relate their motion to the applied forces for applications in (not only) mechanical and civil engineering. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Students of mechanical and civil engineering learn the fundamental concepts of the dynamics of mechanical systems. By studying the motion of a single particle, systems of particles, of rigid bodies, and of deformable bodies, we introduce essential concepts such as kinematics, kinetics, work and energy, equations of motion, and forces and torques. Further topics include the stability of equilibria and vibrations as well as an introduction to the dynamics of deformable bodies and waves in elastic rods. Throughout the course, application-oriented examples help students acquire a proficient background in engineering dynamics, further to learn and embrace problem-solving techniques for dynamical engineering problems, gain cross-disciplinary expertise (by linking concepts from, among others, mechanics, mathematics, and physics), and prepare students for advanced courses and work on engineering applications. The detailed syllabus includes: 1. Motion of a single particle: kinematics (trajectory, velocity, acceleration), forces and torques, constraints, active and reaction forces, balance of linear and angular momentum, work-energy balance, conservative systems, equations of motion. 2. Motion of systems of particles: internal and external forces, balance of linear and angular momentum, work-energy balance, rigid systems of particles, particle collisions, mass accretion/loss. 3. Motion of rigid bodies in 2D and 3D: kinematics (angular velocity, velocity and acceleration transfer, instantaneous center and axis of rotation), balance of linear and angular momentum, work-energy balance, angular momentum transport, inertial vs. moving reference frames, apparent forces, Euler equations. 4. Vibrations: Lagrange equations, concepts of stability, single-DOF oscillations (natural frequency, free-, damped-, and forced response), multi-DOF oscillations (natural frequencies, eigenmodes, free-, damped-, and forced response). 5. Introduction to waves and vibrations of elastic bodies: local form of linear momentum balance, waves in slender elastic rods. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes (a complete scriptum) is available on Moodle. Students are encouraged to take their own notes during class. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Lecture notes (a complete scriptum) is available on Moodle. Further reading materials are suggested but not required for this class. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | For students in the bachelor's degree programme in mechanical engineering: Precondition for this course unit are passed first year examination blocks A and B. All course materials (including lecture notes, exercise problems, etc.) are available on Moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||